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ABSTRACT 

Two classes of exact solutions to the Einstein-Maxwell system is found in terms of elementary 

function. This is achieved by choosing a particular form for the measure of anisotropy with the MIT bag 

model equation of state relating the radial pressure to the energy density consistent with quark stars. 

These solutions contain the models found previously in the limit of vanishing charge/measure of 

anisotropy. Isotropic exact solutions regained include models by Komathiraj and Maharaj; Mak and 

Harko; and Misner and Zapolsky. A physical analysis of the matter and electromagnetic variables 

indicates that the model is well behaved and regular. 
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1.  INTRODUCTION  
 

The first study of quark stars was performed by Itoh [1] for static matter in equilibrium. 

The physical processes governing the behaviour of quark matter with ultrahigh densities is still 

under investigation. Since we do not observe free quarks, in an attempt to describe the quark 

confinement mechanism, Chodos et al. [2] proposed the phenomenological MIT Bag model 

where one assumes that the quark confinement is caused by a universal pressure called the ‘bag 
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pressure’ at the boundary of the region containing quarks. The equation of state (EOS) in the 

bag model has a simple linear form 

 

𝑝𝑟 =
1

3
(𝜌 − 4𝐵),                                                      (1)           

 

where 𝜌 is the density, 𝑝𝑟 radial pressure and 𝐵 is the bag constant. However, theoretical works 

of realistic stellar models [3-5] it has been suggested that superdense matter may be anisotropic, 

at least in some density ranges. The review of Weber [6] highlights models of compact 

astrophysical objects composed of strange quark stars. Some recent investigations for compact 

objects with a quark equation of state include the treatments of Malavar [7, 8], Takisa et al. [9] 

and Paul et al. [10].  

Incorporation of electromagnetic field and anisotropy makes the system of field equations 

even more difficult to solve unless one adopts some simplifying techniques to make them 

tractable. In an earlier work, by identifying a conformal Killing vector, Mak and Harko [11] 

developed a relativistic model of an isotropic quark star. The work was later extended by 

Komathiraj and Maharaj [12] who provided a more general class of exact solutions by 

incorporating an electromagnetic field in the system of field equations.  

In a more recent work, Maharaj et al. [13] have made a further generalization of [12] 

model by incorporating anisotropic stress into the system. In a subsequent paper, Sunzu et al. 

[14] performed a detailed physical analysis of the solution obtained in [13] and discussed its 

relevance in the context of compact quark stars candidates. It is interesting to note that the class 

of solutions generated in [13] for an assumed form of the anisotropic parameter ∆ = 𝐴0 +
𝐴1𝑥 + 𝐴2𝑥2 + 𝐴3𝑥3 can be reduced to the charged isotropic stellar solutions of [11] and [12]. 

In this work, we choose a different form of the measure of anisotropy which, interestingly, 

provides much simpler analytic solutions. 

The objective of this paper is to generate new classes of exact solutions with a linear 

quark matter equation of state for charged anisotropic stars. We build new models by specifying 

a particular form for one of the gravitational potentials and the measure of anisotropy that has 

been used in a recent paper by Maharaj et al. [13] and Malavar [15]. The advantage of this 

approach is that one can regain the charged isotropic stellar model simply by setting the 

anisotropy to zero. It is interesting to note that many previously found explicit solutions of the 

Einstein-Maxwell system with anisotropic stress e.g., solutions obtained by [16-20] do not have 

their corresponding isotropic analogues. 

The paper has been organized as follows: In Section 2, the Einstein-Maxwell system of 

equations is expressed for static spherically symmetric spacetime according to Durgapal and 

Bannerji [21] transformation by incorporating the linear quark matter equation of state. In 

Section 3, particular forms for one of the gravitational potentials and the measure of anisotropy 

are chosen.  

This helps to deduce the master differential equation in the remaining gravitational 

potential which governs the behaviour of the model. Two new class of solutions, in terms of 

elementary functions, have been obtained. The charged isotropic solutions found earlier in [11, 

12, 22] have been shown to be special cases of general class of solutions obtained. The physical 

features of the model generated in this paper are illustrated briefly in Section 4. Finally decided 

in Section 5. 
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2.  FIELD EQUATIONS  

 

The generic form of the line element of a spherically symmetric relativistic fluid sphere 

in Schwarzschild coordinates (𝑥𝑎) = (𝑡, 𝑟, 𝜃, 𝜙) is given by   

 

𝑑𝑠2 = −𝑒2𝜇(𝑟)𝑑𝑡2 + 𝑒2𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜙2),                                            (2) 
 

where 𝜇(𝑟) and 𝜆(𝑟) are yet to be determined. The Einstein-Maxwell system of field equations 

corresponding to the line element (1), are obtained as: 

 
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜆′

𝑟
𝑒−2𝜆 = 𝜌 +

1

2
𝐸2,                                                             (3) 

 

−
1

𝑟2
(1 − 𝑒−2𝜆) +

2𝜇′

𝑟
𝑒−2𝜆 = 𝑝𝑟 −

1

2
𝐸2,                                                      (4) 

 

𝑒−2𝜆 (𝜇′′ + 𝜇′2 +
𝜇′

𝑟
− 𝜇′𝜆′ −

𝜆′

𝑟
) = 𝑝𝑡 +

1

2
𝐸2,                                           (5) 

 
1

𝑟2
𝑒−𝜆(𝑟2𝐸)′ = 𝜎.                                                                                               (6) 

 

In the above 𝜌 is the energy density, 𝑝𝑟 is the radial pressure, 𝑝𝑡  is the tangential pressure, 

𝐸 is the electric field intensity and 𝜎 is the proper charge density, and a prime (′) denotes 

derivative with respect to the radial coordinate 𝑟.  

Now by introducing the Durgapal and Bannerji [21] transformations 

 

𝐴2𝑦2(𝑥) = 𝑒2𝜇(𝑟),    𝑍(𝑥) = 𝑒−2𝜆(𝑟),   𝑥 = 𝐶𝑟2, 
 

the Einstein-Maxwell system of field equations (3)-(6) can be written as  

 
1 − 𝑍

𝑥
− 2�̇� =  

𝜌

𝐶
+

1

2
 𝐸2                                                                                     (7) 

 

4𝑍
�̇�

𝑦
   +

𝑍 − 1

𝑥
 =

𝑝𝑟

𝐶
−

1

2𝐶
  𝐸2                                                                         (8) 

 

4𝑥𝑍
�̈�

𝑦
+ (4𝑍 + 2𝑥�̇�)

�̇�

𝑦
 + �̇�  =

𝑝𝑡

𝐶
+

1

2𝐶
 𝐸2                                                  (9) 

 

𝜎2 =    
4𝐶𝑍

𝑥
  (𝑥�̇� + 𝐸)

2
                                                                                    (10) 

 

where 𝐴 and 𝐶 are arbitrary constants, and dots  denote derivative with respect to the new 

coordinate 𝑥. In these equations and hereafter we have used units where 8𝜋𝐺 = 𝑐 = 1.  
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The energy density 𝜌, radial pressure 𝑝𝑟 and the tangential pressure 𝑝𝑡 are measured 

relative to the comoving fluid 4-velocity  𝑢𝑎 = 𝑒−𝜇𝛿0
𝑎. 

The system of equations (7)-(10), including the MIT bag model EOS (1) becomes  

 

𝜌 = 3𝑝𝑟 + 4𝐵,                                                                                                             (11) 

 

𝑝𝑟

𝐶
= 𝑍

�̇�

𝑦
−

�̇�

2
−

𝐵

𝐶
,                                                                                                     (12) 

 

𝑝𝑡 = 𝑝𝑟 + Δ,                                                                                                                 (13) 
 
Δ

𝐶
=

4𝑥𝑍�̈�

𝑦
+ (6𝑍 + 2𝑥�̇�)

�̇�

𝑦
+ [2 (�̇� +

𝐵

𝐶
) +

𝑍 − 1

𝑥
],                                        (14) 

 

𝐸2

2𝐶
=

1 − 𝑍

𝑥
− 3𝑍

�̇�

𝑦
−

�̇�

2
−

𝐵

𝐶
,                                                                                  (15) 

 

where Δ = 𝑝𝑡 − 𝑝𝑟 represents the measure of anisotropy. The system of equation (11)-(15) 

governs the gravitational behavior of a charged quark star with anisotropic matter. We describe 

one possible integration procedure that leads to an exact solution of the Einstein-Maxwell 

system (11)-(15). Note that other procedures are possible; the approach in this work has the 

advantage of producing a first order differential equation that has solutions in terms of 

elementary functions. 

The mass of a self-gravitating object for a given radius is an important measure for 

comparison with observational data. In this case, the mass contained within a radius 𝑥 of the 

sphere is obtained as 

 

𝑚(𝑥) =
1

4𝐶
3
2

∫ √𝑥𝜌(𝑥)𝑑𝑥.                                                                                      (16)
𝑥

0

 

 

 

3.  GENERATING NEW SOLUTIONS  

 

Note that the system (11)-(15) comprises five independent equations in seven unknowns 

𝑍, 𝑦, 𝜌, 𝑝𝑟 ,  𝑝𝑡, ∆  and 𝐸. Naturally, the equivalent system (11)-(15) can be solved if two of 

these unknowns are assumed a priori. We seek to solve the system by making explicit choices 

for the gravitational potential 𝑍 and the anisotropic parameter ∆. Accordingly, we make the 

following assumptions: 

  

𝑦(𝑥) = (𝑎 + 𝑥𝑛)2𝑛,                                                                                                    (17) 
 

∆=
2𝛼𝐶

𝑎𝑥𝑛−1 + 𝑥2𝑛−1
,                                                                                                    (18) 
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where 𝑎 , 𝑛 and  𝛼  are constants. The choice (17) ensures that the metric function is regular at 

the centre and is well behaved within the stellar interior. A similar choice has been used in [12, 

13]. As far as the second choice is concerned, it is a reasonable assumption in the sense that ∆ 

vanishes at the center (i.e., 𝑝𝑟 = 𝑝𝑡 at the origin) which is consistent with the physical 

requirement for a realistic stellar model.  

Substitution of (17) and (18) into (14) yields 

 

�̇� + [
1

2𝑥
+

2(2𝑛 − 1)(𝑛𝑥2𝑛−1)

𝑥(𝑎𝑥𝑛−1 + 𝑥2𝑛−1)
 +

𝑛(4 − 3𝑛 + 8𝑛2)𝑥2𝑛−1

2𝑥(𝑎𝑥𝑛−1 + (1 + 2𝑛2)𝑥2𝑛−1)
] 𝑍    

 

−
(1 −

2𝐵𝑥
𝐶 ) (𝑎𝑥𝑛−1 + 𝑥2𝑛−1)

2𝑥(𝑎𝑥𝑛−1 + (1 + 2𝑛2)𝑥2𝑛−1)
−

𝛼

(𝑎𝑥𝑛−1 + (1 + 2𝑛2)𝑥2𝑛−1)
= 0,                         (19) 

 

Once (19) is integrated we can directly find the remaining quantities 𝜌,  𝑝𝑟 , 𝑝𝑡 from the 

system (11)-(13) and 𝐸  from (15) as ∆ is known from (18). Equation (19) can be integrated in 

terms of elementary functions for specific values of the model parameter 𝑛 as discussed in the 

following. 

 

3. 1. The case  𝒏 =
𝟏

𝟐
 

In this case (17) gives the first metric function  

 

𝑦(𝑥) = 𝑎 + √𝑥 
 

Equation (19) can be integrated to give the second metric function  

 

𝑍 =
3(2𝑎 + √𝑥) −

𝐵𝑥
𝐶 (4𝑎 + 3√𝑥) + 3𝛼𝑥3/2

3(2𝑎 + 3√𝑥)
 

 

Consequently, we generate an exact analytical model for the Einstein Maxwell system as: 

 

𝑒2𝜇 = 𝐴2(𝑎 + √𝑥)2,                                                                                                           (20) 
 

𝑒2𝜆 =
3(2𝑎 + 3√𝑥)

3(2𝑎 + √𝑥) −
𝐵𝑥
𝐶 (4𝑎 + 3√𝑥) + 3𝛼𝑥3/2

,                                                       (21) 

 

𝜌 =
3𝐶(6𝑎2 + 10𝑎√𝑥 + 3𝑥)

2√𝑥(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 +

𝐵 (16𝑎3 + 47𝑎2√𝑥 + 48𝑎𝑥 + 18𝑥
3
2)

2(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2  

 

−
3𝛼√𝑥(3𝑎2 + 4𝑎√𝑥)

2(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 ,                                                                                              (22) 



World Scientific News 153(2) (2021) 205-215 

 

 

-210- 

𝑝𝑟 =,
𝐶(6𝑎2 + 10𝑎√𝑥 + 3𝑥)

2√𝑥(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 −  

𝐵 (16𝑎3 + 81𝑎2√𝑥 + 120𝑎𝑥 + 54𝑥
3
2)

6(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2  

 

−
𝛼√𝑥(3𝑎2 + 4𝑎√𝑥)

2(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 ,                                                                                          (23) 

 

𝑝𝑡 =
𝐶(6𝑎2 + 10𝑎√𝑥 + 3𝑥)

2√𝑥(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 − 

𝐵 (16𝑎3 + 81𝑎2√𝑥 + 120𝑎𝑥 + 54𝑥
3
2)

6(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2   

 

+
𝛼√𝑥[2𝐶(2𝑎 + 3√𝑥)

2
− (3𝑎2 + 4𝑎√𝑥)]

2(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 ,                                                           (24) 

 

∆=
2𝛼𝐶√𝑥

𝑎 + √𝑥
,                                                                                                                    (25) 

 

𝐸2 =
𝐶(−2𝑎2 − 2𝑎√𝑥 + 3𝑥) + 𝐵𝑥(𝑎2 + 2𝑎√𝑥)

√𝑥(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2 −

𝛼√𝑥(7𝑎2 + 22𝑎√𝑥 + 18𝑥)

(𝑎 + √𝑥)(2𝑎 + 3√𝑥)
2            (26) 

 

Interestingly, by setting 𝛼 = 0, we regain the 1st class of charged isotropic solutions of 

[12]. If we further set 𝑎 = 0, we obtain 

 

𝑒2𝜇 = 𝐴2𝐶𝑟2,   𝑒2𝜆 =
3

1 − 𝐵𝑟2
,   𝜌 =

1

2𝑟2
+ 𝐵,   𝑝𝑟 = 𝑝𝑡 =  

1

6𝑟2
− 𝐵,   𝐸2 =

1

3𝑟2
          (27) 

 

which is the quark stellar model of [11]. By setting B = 0 in (27), we regain the [22] solution. 

The physical features of the solutions (27) were studied by Mak and Harko [11] and 

shown to be consistent with the interior of a quark star with charged material. This corresponds 

to a single stable quark configuration with radius 𝑅 = 9.46 𝑘𝑚 and mass 𝑀 = 2.86𝑀⨀; these 

figures are consistent with values obtained using numerical methods by other researchers. 

Consequently, the more general class of solutions (20)-(26) is likely to produce charged 

quark models consistent with stellar evolution and observational data. However, even though 

the gravitational potentials remain well behaved for the obtained class of solutions as in 

previously found solutions of [12, 13]; the matter variables and the electric field suffer from 

singularity in this case. 

 

3. 2. The case  𝒏 = 𝟏 

For this case (17) gives the first metric function  

 

𝑦(𝑥) = (𝑎 + 𝑥)2 
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Equation (19) can be integrated to give the second metric function  

 

𝑍 = [9(35𝑎3 + 35𝑎2𝑥 + 21𝑎𝑥2 + 5𝑥3)  −
2𝐵𝑥

𝐶
(105𝑎3 + 189𝑎2𝑥 + 135𝑎𝑥2 + 35𝑥3)

+ 2𝛼𝑥2(63𝑎2 + 90𝑎𝑥 + 35𝑏2𝑥2)] ×
1

315(𝑎 + 𝑥)2(𝑎 + 3𝑥)
    

  

The subsequent solution and matter variables are given as:  

 

𝑒2𝜇 = 𝐴2(𝑎 + 𝑥)4,                                                                                                                  (28) 
 

𝑒2𝜆 =
315(𝑎 + 𝑥)2(𝑎 + 3𝑥)

9(35𝑎3 + 35𝑎2𝑥 + 21𝑎𝑥2 + 5𝑥3) − 𝑓(𝑥)
,                                                        (29) 

 

𝜌 =
6𝐶(70𝑎4 + 217𝑎3𝑥 + 159𝑎2𝑥2 + 75𝑎𝑥3 + 15𝑥4)

35(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
                                                                    

 

+
2𝐵[3(35𝑎5 + 133𝑎4𝑥 + 246𝑎3𝑥2) + 5(254𝑎2𝑥3 + 209𝑎𝑥4 + 63𝑥5)]

105(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
          

 

 −
𝛼𝑥(126𝑎4 + 207𝑎3𝑥 − 535𝑎2𝑥2 − 835𝑎𝑥3 − 315𝑥4)

105(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
,                                        (30) 

 

𝑝𝑟 =
2𝐶(70𝑎4 + 217𝑎3𝑥 + 159𝑎2𝑥2 + 75𝑎𝑥3 + 15𝑥4)

35(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
 

 

−
2𝐵[3(35𝑎5 + 497𝑎4𝑥 + 1854𝑎3𝑥2) + 5(1678𝑎2𝑥3 + 1177𝑎𝑥4 + 315𝑥5)]

315(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
 

 

 −
𝛼𝑥(126𝑎4 + 207𝑎3𝑥 − 535𝑎2𝑥2 − 835𝑎𝑥3 − 315𝑥4)

315(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
,                                       (31) 

 

𝑝𝑡 =  
2𝐶(70𝑎4 + 217𝑎3𝑥 + 159𝑎2𝑥2 + 75𝑎𝑥3 + 15𝑥4)

35(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
  

 

 −
2𝐵[3(35𝑎5 + 497𝑎4𝑥 + 1854𝑎3𝑥2) + 5(1678𝑎2𝑥3 + 1177𝑎𝑥4 + 315𝑥5)]

315(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
 

 

−
𝛼𝑥(126𝑎4 + 207𝑎3𝑥 − 535𝑎2𝑥2 − 835𝑎𝑥3 − 315𝑥4)       

315(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
+

2𝛼𝐶

𝑎 + 𝑥
                (32) 

 

∆=
2𝛼𝐶

𝑎 + 𝑥
,                                                                                                                              (33) 
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𝐸2 =
𝐶𝑥(196𝑎3 + 1452𝑎2𝑥 + 1356𝑎𝑥2 + 420𝑥3)

35(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
     

 

−
𝐵𝑥 (56𝑎4 + 432𝑎3𝑥 + 2176𝑎2𝑥2 +

7280
3 𝑎𝑥3 + 840𝑥4)

105(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
       

 

 −
2𝛼𝑥 (84𝑎4 + 633𝑎3 + 1699𝑎2𝑥2 +

4865
3 𝑎𝑥3 + 525𝑥4)

105(𝑎 + 𝑥)3(𝑎 + 3𝑥)2
,                                   (34)   

 

where 𝑓(𝑥) =
2𝐵𝑥

𝐶
(105𝑎3 + 189𝑎2𝑥 + 135𝑎𝑥2 + 35𝑥3) + 2𝛼𝑥2(63𝑎2 + 90𝑎𝑥 + 35𝑏2𝑥2) 

It is to be stressed here that this particular solution is a generalization of the second class 

of solutions obtained earlier by Komathiraj and Maharaj [12] which can be regained by setting 

𝛼 = 0. The exact model (28)-(34) constitutes a new family of analytical solutions for quark star 

with charged and anisotropic matter. The gravitational potentials 𝑒2𝜇 and 𝑒2𝜆 in (28)-(29) have 

the advantage of having a simple analytic form, and they are written in terms of rational 

functions. The matter variables and the measure of anisotropy have a simple analytic 

representation with vanishing electric field and measure of anisotropy at the centre of the star. 

The finiteness of 𝑒2𝜇,  𝑒2𝜆, 𝜌,  𝑝𝑟 ,  𝑝𝑡, ∆  and 𝐸 at the origin 𝑥 = 0 is a very welcome 

feature which is absent in the previous class of solutions (20)-(26).  Consequently the class of 

solutions found in this section are good candidates to produce charged anisotropic stars with 

physically reasonable interior distributions. 

 

 

4.  PHYSICAL ANALYSIS 

 

By utilizing the matching conditions, regularity conditions and other physical 

requirements [23], let us now find the appropriate bounds on the model parameters for the 

particular solution (28)-(34): 

 

C1. The gravitational potentials 𝑒2𝜆 and 𝑒2𝜇 should remain positive throughout the stellar 

interior. From equations (28) and (29), we note that 𝑒2𝜇(𝑟 = 0) = 𝐴2𝑎4, (𝑒2𝜇)′(𝑟 = 0) =

0 and 𝑒2𝜆(𝑟 = 0) = 1, (𝑒2𝜆)
′
(𝑟 = 0) = 0. The results show that the gravitational potentials 

are regular at the centre 𝑟 = 0. 

 

C2. The energy density and pressure should be non-negative inside the stellar interior. From 

(30), we obtain the central density 𝜌0 = 𝜌(𝑟 = 0) =
12𝐶

𝑎
+ 2𝐵. Using (31), we have 

𝑝𝑟(𝑟 = 0) = 𝑝𝑡(𝑟 = 0) =
4𝐶

𝑎
−

2𝐵

3
. These results imply that the energy density and the two 

pressures will be non-negative at the centre if the following condition is satisfied: 
𝐶

𝑎
>

𝐵

6
. 

 

C3. The interior metric should be matched to the exterior Reissner-Nordstrom metric at the 

boundary of the star 𝑟 = 𝑅. Using this conditions, the constant 𝐴 is obtained in terms of model 

parameters and the boundary radius.  
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C4. The requirement 𝑝𝑟(𝑟 = 0) = 0  yields the bag constant 𝐵 in terms of model parameters 

and the boundary radius. 

 

C5. For a realistic star, it is expected that the gradient of density, radial pressure and the 

tangential pressure should be decreasing functions of the radial parameter 𝑟  i.e., 
𝑑𝜌

𝑑𝑟
≤ 0,

𝑑𝑝𝑟

𝑑𝑟
≤

0 and 
𝑑𝑝𝑡

𝑑𝑟
≤ 0. Using equations (30)-(32) these nature can be shown. 

 

C6. The causality condition demands that the radial and the tangential sound speeds should not 

exceed the speed of light i.e., 0 <  
𝑑𝑝𝑟

𝑑𝜌
< 1, 0 <  

𝑑𝑝𝑡

𝑑𝜌
< 1. In this model we have 0 <  

𝑑𝑝𝑟

𝑑𝜌
<

1

3
. 

By choosing the model parameters appropriately, we can show that the requirement  0 <  
𝑑𝑝𝑡

𝑑𝜌
<

1 is also fulfilled in this model. 

 

C7. For a realistic model, the following energy conditions are to be satisfied: (i) The Weak 

Energy Condition (WEC) 𝜌 − 𝑝𝑟 ≥ 0 and 𝜌 − 𝑝𝑡 ≥ 0 . (ii) The Strong Energy Condition 

(SEC) 𝜌 − 3𝑝𝑟 ≥ 0 and 𝜌 − 3𝑝𝑡 ≥ 0 . (iii) The Trace Energy Condition (TEC) 𝜌 − 𝑝𝑟 −
2𝑝𝑡 ≥ 0. Since 𝜌, 𝑝𝑟 and 𝑝𝑡 are non-negative quantities, the energy condition(s) are satisfied in 

this model. 

 

C8. For a stable configuration, it is expected that the adiabatic index Γ =
𝜌+𝑝𝑟

𝑝𝑟
 
𝑑𝑝𝑟

𝑑𝜌
, should be 

greater than 4/3 [24, 25]. The above requirement is fulfilled in our model as can be seen from 

equation (30)-(31). 

 

We have proved that the second class of solution (28)-(34) obtained in this paper is regular 

and well-behaved. Since the solution has been obtained by assuming the bag model EOS for  

a quark star, one can use the solution to model compact stellar objects like Her X-1 and SAX 

and J1808.4-3658, among others, which have been claimed to be good strange star candidates 

in the recent past. 

Note that the model contains four constants namely, 𝑎, 𝐶, 𝐵 and 𝛼. The constants 𝑎  appear 

in the potential 𝑦 given in equation (28); the constant 𝐶 has been utilized in the transformation 

[21]; 𝐵 is the bag constant given in equation (1) and 𝛼 corresponds to the anisotropic factor 

given in (33). Three of these parameters do get fixed by the matching conditions at the 

boundary, namely matching of the interior solution to the Schwarzschild exterior metric at 

𝑟 = 𝑅 and imposition of the requirement that pressure must vanish at the boundary i.e., 

𝑝𝑟(𝑟 = 𝑅) = 0. The parameters 𝛼 fixes the extent of anisotropy (𝛼 = 0 implies isotropic 

configuration). Thus, for a given bag constant within the stability window we have a physically 

reasonable and well-behaved model. 

 

 

5.  CONCLUSIONS 

 

To summarize, in this work, we have been able to provide a couple of new solutions for 

an anisotropic stellar configuration couched on the Reissner-Nordström background spacetime. 
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We obtained solutions for a charged strange quark star with anisotropic matter described 

by the MIT bag model for the metric functions 

 

𝑦(𝑥) = 𝑎 + √𝑥 
 

𝑦(𝑥) = (𝑎 + 𝑥)2 

 

The model reduces to an integration of a first order differential equation. The first solution 

generalized the model of Mak and Harko [11] for a quark star in an electromagnetic field with 

the absence of anisotropic factor. The second solution has the advantage of not containing any 

singularities at the stellar centre. We have demonstrated that there exist particular values of the 

model parameters for which a particular class of solution (28)-(34) satisfies the requirements 

of a physically reasonable stellar model. Since the solution has been obtained for a composition 

admitting a bag model EOS, the solution might be useful for the description of compact strange 

star candidates. Hopefully, our results will contribute to the rich class of exact solutions to the 

Einstein-Maxwell system of field equations. It is to be stressed that we have been able to 

generate solutions for parameter values (i)  𝑛 = 1/2;  and (ii)  and 𝑛 = 1, only. It will be 

interesting to check what other values of the model parameters can yield solution which are 

regular, well behaved and can describe realistic stars. Such possibilities, however, will be taken 

up elsewhere. 
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