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ABSTRACT 

Investigation on thermal responses of different materials subjected to variant environmental 

condition has been a subject of ever-increasing research interest for decades. As such, research studies 

have shown different materials exhibiting peculiar characteristics of commercially used heat 

enhancement devices. Therefore, this work presents an investigation on thermal behaviour of a 

convective porous moving fins with temperature dependent thermal conductivity for five different 

materials. These materials include copper, Aluminium, Silicon nitride, Silicon carbide and Stainless 

steel. A hybrid method, viz- Laplace-variational iterative method (LVIM) is used to solve the model 

equation developed. And a perfect agreement is achieved when the result obtained from LVIM is 

verified with the exact solution. The result obtained shows that silicon carbide compete favourably with 

copper as the most efficient material in heat enhancement, while stainless steel shows the least 

performance. It is hoped that this work will serve as a template and a helpful tool for both scientist and 

engineers’ in future design of fins. 
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1.  INTRODUCTION 

 

The efficient dissipation of heat from devices in a thermal system is a critical factor 

determining the durability as well as the shelf-life of the components within the system and this 

is often achieved through the use of extended surfaces known as fin. As such, fins find 

application in many field of engineering practices, such as in Electronics, Power plant-, 

Thermal-, Aviation-, Chemical- , Nuclear Industries etc., to mention but few [1] 

An overview of earlier work reveals an extensive studies carried out to investigate the 

thermal response of fins subjected to variant environmental conditions. Thus, Roy and Mallick, 

[2] carried out analysis of straight rectangular fins using Homotopy perturbation methods. The 

result obtained for optimum dimensionless parameter, efficiency and temperature distribution 

are suitable for practical fin. Hatami and Ganji [3], analytically determined the optimization of 

the longitudinal fins with different geometries, so as to determine the point at which the heat 

transfer rate reaches the optimum value in fins at constant volume.  

The research findings shows that maximum heat transfer decreases with increase in fin 

thickness ratio, also that, an increase in the convection coefficient power index(m) increases 

the optimum points for profile power index(n) of fin geometry and fin thickness. In the work 

of Chen et al. [4], an assessment of heat sink performance with respect to material savings was 

conducted on trapezoidal and rectangular fin. The study shows that the performance drop 

depends on the different fin tip to base ratio and that the performance difference between the 

two selected profiles are quite insignificant at low velocity region but picks up as the velocity 

increases.  

A transient condition of fin effectiveness and efficiency on the position function of 

rhombus sectional area was carried out by Nugroho and Purwadi [5], and their findings shows 

that the greater the value of convective heat transfer coefficient, the smaller the efficiency and 

the effectiveness of the fin becomes, in addition, under the transient condition, the effectiveness 

and the efficiency of the fin are significantly affected by the parameters such as density, thermal 

diffusity, specific heat  and conductive heat transfer coefficient of the fin material. An 

exploration of thermal analysis of convective straight fin with temperature dependent thermal 

conductivity and internal heat generation was studied by Ghasemi, et al. [6], with constants 

chosen from industrial fins using the differential transform method (DTM), the result obtained 

matches with that of numerical results when verified.  

In the work of Singh et al. [7], a comparison of heat transfer rate was carried out between 

fins with rectangular extensions and that of trapezoidal, triangular and circular extensions, the 

analysis reveals a greater heat transfer was achieved through the use of rectangular extension 

due to its wider surface area. Reddy et al. [8], numerically and experimentally determined the 

steady state temperature distribution in a pin fin using finite element method. The result 

obtained is in good agreement when validated with the experimental work. Joel et al. [9] , 

modelled the effect of fin geometry on the cooling process of computer microchips and 

discovered that higher heat enhancement per unit volume, higher efficiency in heat dissipation 

and greater heat loss per number of fin is exhibited by triangular spine fin geometry as compared 

with that of pin and rectangular spine geometry.  

Wangikar et al. [10], analysed the effect of geometry on heat transfer coefficient of 

notched fins attached to vehicle engine  and discovered that fins with triangular notches exhibit 

highest heat enhancement as compared to that of other geometries. Jain et al. [11], investigated 

the effect of variation of fin geometries on heat transfer of fin, the result obtained shows the 
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triangular fin exhibiting highest temperature drop and heat transfer rate. Thomas [12], worked 

on the effect of first order two dimensional formulation on heat transfer in fin assemblies and 

found out that effect is only significant in bimetal strip assemblies while it is less in arrays of 

fin made of material of the same compositions. 

Past work have shown the significant effect of porosity on the heat distribution in fin 

using different model. Meanwhile, Kiwan et al. [13, 14] were the pioneer of the concept of 

using the Darcy model to analyse heat transfer in porous fin materials [15] and found it to be 

very effective. In the same vane, Patel et al. [16], analytically derived the temperature 

distribution efficiency and effectiveness of longitudinal porous fin, using Adomian 

decomposition sumudu transform method (ADSTM). It was observed from the obtained result, 

that the temperature distribution decreases with increase in porosity and convection parameter 

of the fin. Ma et al. [17], simulated a combined conductive, convective and radiative heat 

transfer in a moving irregular porous fin of different materials and geometries, using spectral 

element methods and concluded that volume adjusted efficiency is the best tool to use to 

compare the efficiency of fins with different configurations. In addition, their findings shows 

copper materials having the highest heat enhancement properties while the stainless steel shows 

the least. In a related work carried out by Hatami and Ganji [18], the thermal behaviour of 

longitudinal convective radiative porous moving fin with different section shapes and ceramic 

materials 𝑆𝑖𝐶 and 𝑆𝑖3𝑁4 is analysed. The result obtained shows silicon carbide having the 

highest temperature distribution, while silicon nitride showing the least. However the trend 

reverses, when heat transfer properties of the materials is examined. Silicon nitride depicts the 

highest transfer, followed by Aluminum, while silicon carbide shows the least heat transfer rate.  

Over the years, researchers have developed different methods of solution to predict the 

thermal behaviour of fins subjected to different environmental conditions. Thus, Vahabzadeh 

et al. [19] carried out analytical investigation of porous pin fin with variable section in fully 

wet conditions by using the Least square method (LSM) to solve a non-linear equation derived 

from the physical model and  verified the result obtained with numerical method (fourth order 

Runge-kutta) with a very good agreement. Furthermore, an optimisation of longitudinal fins 

with different geometries for increasing the heat transfer was done by Hatami and Ganji [20], 

using the Least square methods (LSM). The work establishes a direct relationship between 

convective coefficient power index (m) and optimum point for profile power index (n) for the 

fin geometries. Sobamowo [21] made a significant correction to the work of Patra and Saha 

Ray [22], who employed Homotopy perturbation sumudu transform to solve convective radial 

fin with temperature-dependent thermal conductivity of fractional order energy equation. 

Zaidi and shahzad [23], presented an analytical solution of temperature distribution in a 

rectangular fins with variable temperature surface heat flux using Optimal Homotopy 

Asymptotic Method (OHAM) and concluded that the results obtained are simple, effective and 

easy to apply for fin design. Ghoshdastidar and Mukhopadhyay [24], obtained a numerical 

solution for transient heat transfer in a straight composite fin using Alternating Direction 

implicit (ADI), the result obtained shows good agreement with known analytical solution 

except for a small time and large distance.  

Bhowmik, et al. [25], predicted the geometry of rectangular and hyperbolic fin profile 

with temperature dependent thermal properties using Adomian decomposition and differential 

evolutionary methods and this serves as platform of selection of rectangular and annular fin that 

can satisfy a given temperature field. A generalized Hankel transform is used for the thermal 

conduction analysis of a hollow cylinder in [26], the result obtained is verified with finite 
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element method with good agreement. The effectiveness of a New iterative method (NIM) in 

solving non- linear partial differential equations is expressed in [27, 28], with the result showing 

good agreement with the existing methods such as VIM, ADM, and HPM. In addition, it was 

found out that the method provides a convergent series with easily computable components as 

compared to other existing methods. In the investigation carried out by Su and Xu [29], Green 

function was used to analyse steady state heat distribution of a plate fin heat sink, the outcome 

of simulation show good agreement when validated with experimental measurement. Khan et 

al, [30], applied Homotopy Analysis Method [HAM] to analyse the thermal radiation effect on 

squeezing flow casson fluid between parallel disks and verified the result with numerical 

solution, which proves HAM as an effective tool in solving the physical model. 

The aforementioned analysis reveals the depth of work done in the past, on evolution of 

methods of solution and its application in expressing the heat distribution in fins. While Refs 

(16-23, 25-27), show the strength of approximate analytical method, Refs (24) depicts that of 

numerical methods and the strength of exact method is shown in Refs (26 and 29). However, 

this work presents a hybrid method of solution, viz Laplace Variational iterative method in 

analysing the thermal behaviour of convective porous moving fins, since it has the advantage 

of combining the strength of both analytical as well as that of approximate analytical methods.  

 

 

2.  PHYSICAL MODEL 

 

The heat transfer equation for the model is subjected to the following assumptions: 

1. Steady state situation is assumed 

2. The porous medium is isotropic, homogeneous and saturated with single fluid 

3. Darcy law governs the interaction between the fluid and porous medium 

4. There is no thermal resistance between the fin base and the solid and the fin tip is 

convective 

5. The solid and fluid are in local thermal equilibrium 

6. The thermal conductivity of the material varies with temperature by the following 

equation: 

 

[1 (T T )]ak k                          (1) 

 

Based on the aforementioned assumptions, the energy equation for the physical model 

depicted in Fig. 1, above is expressed as: 

 

Energy in the left face = Energy out right face + Energy lost by convection + Energy lost by 

moving + Energy lost by immersed fluid.                                      …………..  (2) 

 

or  

 

x x dx convection moving porousq q q q q      
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Substituting [1 (T T )]ak k     in Eq. (3), gives, 
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By applying the following on Eq. (5) and simplify, we have; 

 

max,x L u UU    
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                                                        (6) 

 

Substitute (T T )b     in Eq. (6), gives; 
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By using the following non dimensional parameters on Eq. (7): 
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The non-dimensional form of the equation can be expressed as: 

 
22 2

2 2
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As shown in Fig: 1. The Boundary condition can be written as: 
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In order to demonstrate the effectiveness of the porous moving fin, the efficiency of the 

fin is expressed as the ratio of actual heat transfer to the ideal heat transfer. The porosity 

parameter ( hS ) is as it obtains in [17]. 

 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. showing the geometry of the moving porous fin 
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2. 1. Laplace variation iterative methods 

This is a hybrid method of solution that combines the strength of exact method of solution, 

with that of an approximate analytical methods. This hybrid method is adopted in solving the 

governing equation expressed in Eq. (8), in order to have a closed form analytical expression. 

The theory of Laplace variation iterative Method is expressed below: 

Giving a typical Ordinary differential Equation shown in Eq. (8) below:  

 

 ( )  ( )                      L N g                                                                       (10) 

 

where  

L = linear operator, N = non-linear term and g(x) = source term. 

The Lvim correction functional for Eq. (8) is expressed as: 

 

 1

0

  ( )  ) - ( )   0,1,2....( ) ( ) ( ) ....(nn n nL N g d n



              (11) 

where , var 0n nlagrange multiplier is the restricted iationof      

The general form of Lagrange multiplier can be expressed as: ( )       

Applying Laplace properties on equation (8), we have:  
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     1  ( ) * ( )  ( ) - ( ) ( ) (  n n nnL N g          
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Taking the variation of Eq. (13) with respect to ( )n  , we obtain the optimal value of 

( )      
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Applying variation on Eqn. (14), we have  

 

     1  n n n    
    L L L L                                                                              (15) 

 

The linear differential operator L has a constant coefficient given as: 
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Laplace transform of the first term of L operator 
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so, the variation with respect to     is given by: 
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The extremum condition of 1n  , requires that 1n  is set to zero. Therefore 
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By substituting the value of  in Eq. (19), the following iterative expression is obtained: 
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Application of Laplace-vim scheme on the governing Eq. (8) gives; 
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The iteration for n = 1 and n = 2, gives the temperature distribution solution below:  
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2. 2. Fin Efficiency 

This is defined as the ratio of actual heat transfer to the ideal heat transfer [17]. It is a 

measure of heat enhancement capacity of the fin. 
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3.  VERIFICATION OF LVIM 
 

Table 1. Below, shows the verification of LVIM with exact solution of the physical model 

equation developed. It also reveal that LVIM predicts better than VIM.    
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Table 1. Non-dimensional temperature distribution in a longitudinal moving Porous fin for 

exact, VIM and LVIM. 0, 0, 0.1 0.1h ccS Pe and N      

 

 

                                                                  

___________________________________________________________________________ 

        Exact        VIM        LVIM 

0.0   0.9948513885  0.9948513884  0.9948513885 

0.1   0.9949012982  0.9949012976  0.9949012977 

0.2   0.9950516980  0.9950516985  0.9950516987 

0.3   0.9953036169  0.9953036161  0.9953036163  

0.4   0.9956580964  0.9956580959  0.9956580961 

0.5   0.9961162053  0.9961162048  0.9961162046 

0.6   0.9966790300  0.9966790295  0.9966790297 

0.7   0.9973476798  0.9973476797  0.9973476794 

0.8   0.9981232856  0.9981232855  0.9981232860 

0.9   0.9990070013  0.9990070001  0.9990070006 

1.0   1.0000000000  0.9999999985  1.0000000000 

 

 

Table 2. Thermo-physical properties of air the under ambient condition [17]. 

 

 

,f  
3.kg m
       ,fk

1 1Wm k 
  

,pfc  
1 1Jkg K 

         
,fv

2 1m s    , K      

  

     1.24  0.026         1005       1.568×10-5  3.3×10-3 

   

 

Table 3. Thermo-physical properties of air the under ambient condition [17]. 

 

 

Materials                     ,s  
3.kg m
          ,sk 1 1Wm k 

  
,psc  

1 1Jkg K 
 

 

Aluminum              2700       235          897 

Copper               8960       401          386 

Silicon Nitride (Si3N4)           3200                                25                                  500 

Silicon Carbide (SiC)             3210       370            35 

Stainless Steel                        7930      16.3                                491 

 

 

3. 1. Exact Analytical Solution  

The exact solution of any given equation is the actual solution of the linear part of the 

model equation and it stands as the benchmark by which the solution given by any other 
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methods, either approximate analytical methods or numerical methods are measured. In case of 

Eq. (8), the exact solution can be expressed as: 
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 
 

       (27) 

 

3. 2. Variational iterative method (VIM) of solution 

This is an approximate analytical method which are best used in solving non-linear 

equations in form of analytical expressions, it serves as an easy and helpful tools in designs for 

scientist and engineers. 
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  (28) 

Other higher values of ( )    are too big to be expressed here. 

 

 

4.  RESULT AND DISCUSSION 

 

In this work, five different materials were selected in expressing the thermal analysis of 

the fin model equation developed. These materials are copper, Aluminum, silicon nitride, 

silicon carbide and stainless steel. A straight porous moving fin of regular rectangular geometry 

is used for the analysis and the dispersed medium is air governed by Darcy model [4, 5]. 

In Fig. 2, the temperature distribution against non-dimensional length is plotted for the 

solutions obtained from the exact-, variational iterative- and Laplace variational iterative 

methods and superimposed. The result shows that Laplace variational iterative method predicts 

more accurately and closer to the exact solution than the solution obtained from variational 

iterative method, as shown clearly in Table 1. Furthermore, Fig. 2b. Shows the expanded 

diagram of the graph. 

The Effect of moving porous materials of copper, aluminum, silicon nitride, silicon-

carbide and stainless steel on Non-dimensional Temperature distribution is shown in Fig.3, the 

curve displayed an increasing temperature distribution with increase in non-dimensional length, 

with copper material having the highest increase in non-dimensional temperature and the 

stainless steel having the least. The reason for this can be linked to the thermal conductivity 

properties of each of the materials, as depicted in Table. 1.  
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Fig. 2. Temperature distribution against Non-dimensional length for Exact-, Vim-, and Lvim 

methods 

 

 
Fig. 2b. Temperature distribution against Non-dimensional length for Exact-, Vim-,  

and Lvim methods 
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Fig. 3. Effect of Porous materials on Non-dimensional Temperature distribution in  

a moving fins 

 

 
 

Fig. 4. Effect of varying thermal conductivity parameters (β) on temperature distribution in a 

copper Porous moving fin. 
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Accordingly, the curve shows that silicon carbide materials displayed a very close thermal 

response characteristics with copper material and may be used as a close substitute in areas 

where copper materials are rarely found. Aluminum material also displayed good thermal 

response compared to the two materials mentioned above while silicon-nitride materials and 

stainless- steel materials displayed relatively low thermal response as compared with the three 

materials earlier mentioned, based on their relative thermal conductive values as displayed in 

Table 1.  

In Fig.4 above, the effect of varying thermal conductivity parameters on non-dimensional 

temperature distribution in a copper moving Porous fin is demonstrated. The trend shows an 

expected increasing rise in non-dimensional temperature distribution with increase in thermal 

conductivity parameter.  

The effect of varying Peclet number on non-dimensional temperature distribution in a 

silicon carbide Porous fins is shown in Fig. 5, below. Since Peclet number is the ratio of 

Thermal advective transport rate to thermal diffusion transport rate, it is therefore expected that 

an increase in Peclet number translates to increase in the movement of the fins, thereby reducing 

the time for heat dissipation, the heat retention in the fin consequently leads to the rise in the 

non-dimensional temperature distribution. 

 

 
 

Fig. 5. Effect of varying Peclet number on temperature distribution in a silicon  

carbide moving Porous fin. 

 

 

Fig. 6, presents the effect of varying convective-conductive parameter on non-

dimensional temperature distribution in a silicon nitride moving porous fin. Since convective-

conductive parameter is defined as the ratio of convective heat loss to conductive heat transfer 

in the porous fin, therefore, as the convective-conductive parameter decreases , the convective 
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heat dissipation on the surface of the moving porous fin decreases, thereby leading to the rise 

in non-dimensional temperature distribution.  

 

 
Fig. 6. Effect of varying Convective-conductive term (Ncc) on non-dimensional temperature 

distribution in a silicon nitride moving porous fin. 

 

 

In Fig. 7, and Fig. 8, the variation of fin efficiency against Peclet number and convective-

conductive parameter are displayed respectively. Fig. 7, shows a decreasing trend in fin 

efficiency with increase in Peclet number as observed in Fig. 6, that increase in Peclet  number 

leads to rise in non-dimensional temperature distribution due to the reduced time for convective 

heat dissipation. Hence, the efficiency of the moving porous fin in heat dissipation is reduced. 

More so, the curve shows copper porous fin as having the least decreasing efficiency with 

increase in Peclet number, followed closely by silicon carbide- and aluminum- and silicon 

nitride moving porous fins, while the stainless steel moving porous fin displayed the highest 

decreasing trend in efficiency with increase in Peclet number. In contrast, the trend in Fig. 8, 

presents an increase in efficiency of the moving porous fin with respect to increase in the 

convective-conductive parameter. Since the conductive-convective parameter is directly 

proportional to convective heat dissipation. Therefore, as the convective-conductive parameter 

increases, the convective heat dissipation increases, hence an increase in the efficiency of the 

moving porous fin. Consequently, in respect of thermal conductivity value of each porous fins, 

copper porous fin shows the highest increase in efficiency with respect to convective-

conductive parameter while stainless steel porous fin exhibit the lowest efficiency with respect 

to increase in convective-conductive parameter.  
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Fig. 7. Material efficiency of porous moving fins with varying Peclect number 

 

 
Fig. 8. Material efficiency of porous moving fins with varying 

convective-conductive term (Ncc) 
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5.  CONCLUSIONS 

 

 Copper-silicon carbide and Aluminum porous fins are most efficient in heat dissipation 

relative to silicon nitride and stainless steel porous fins.  

 The efficiency of moving porous fin shows inverse relationship with Peclet number, but 

depicted a direct relationship with the convective-conductive parameter. 

 The result obtained from Laplace variational iterative method shows high accuracy and 

agreement with the exact analytical method, which make it an effective tool in analyzing 

the thermal distribution characteristics of longitudinal fins. 

 

 

Nomenclature 
 

A  unknown constant 

Ac  cross-sectional Area of the fin (m2) 

h  heat transfer coefficient (W m-2 K-1) 

k  thermal conductivity of the materials (W m-1 K-1) 

ka  thermal conductivity at the ambient fluid temperature (W m-1 K-1) 

kb  thermal conductivity at the base temperature (W m-1 K-1) 

L  linear differential operator 

L  Laplace operator  

N  non-linear differential operator 

Ncc  convective-conductive parameter 

P  fin perimeter (m) 

Pe  Peclet number 

Q  heat transfer rate (W) 

Sh   Porosity Parameter 

T  temperature (K) 

T∞  surrounding fluid temperature (K) 

Tb  base surface temperature (K) 

U  dimensionless velocity of the moving fin 

x  distance measured from the fin tip (m) 

 

Greek symbols 
 

β.  a constant describing the variation of thermal conductivity  

η  fin efficiency  

ξ  dimensionless length of fin 

λ  Lagrange multiplier 

γ  the slope of thermal conductivity-temperature curve (K-1) 

θ  dimensionless temperature 

 

Subscript 
 

0  value of x = 0 

∞  value at ambient temperature 

b  value at base temperature 

f  value of fluid 
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L  value at x = L 

s  value of solid material 
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