μ-lacunary $\chi_{A_{uvw}}^3$-convergence defined by Musielak–Orlicz function

Ayten Esi¹, Nagarajan Subramanian² and Ayhan Esi¹

¹Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey
²Department of Mathematics, SASTRA University, Thanjavur - 613 401, India

¹²E-mail address: aytenesi@yahoo.com, nsmaths@yahoo.com , aesi23@hotmail.com

ABSTRACT

We study some connections between μ-lacunary strong $\chi_{A_{uvw}}^3$ -convergence with respect to a mnk sequence of Musielak–Orlicz function and μ-lacunary $\chi_{A_{uvw}}^3$-statistical convergence, where A is a sequence of four dimensional matrices $A(uvw) = (a_{k_1...k_r\ell_1...\ell_s}(uvw))$ of complex numbers.

Keywords: Analytic sequence, x^2 space, difference sequence space, Musielak-modulus function, p-metric space, mn-sequences

2010 Mathematics Subject Classification: 40A05, 40C05, 40D05

1. INTRODUCTION

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^3 for the set of all complex triple sequences (x_{mnk}), where $m, n, k \in \mathbb{N}$, the set of positive integers. Then, w^3 is a linear space under the coordinate wise addition and scalar multiplication.
We can represent triple sequences by matrix. In case of double sequences we write in the form of a square. In the case of a triple sequence it will be in the form of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence spaces is found in Hardy [9], Deepmala et al. [10, 11] and many others. Later on investigated by some initial work on triple sequence spaces is found in Esi [2], Esi et al. [3-8], Şahiner et al. [12], Subramanian et al. [13], Prakash et al. [14] and many others.

Let \((x_{m,n,k})\) be a triple sequence of real or complex numbers. Then the series \(\sum_{m,n,k=1}^{\infty} x_{m,n,k}\) is called a triple series. The triple series \(\sum_{m,n,k=1}^{\infty} x_{m,n,k}\) give one space is said to be convergent if and only if the triple sequence \((S_{m,n,k})\) is convergent, where

\[
S_{m,n,k} = \sum_{i,j,q=1}^{m,n,k} x_{ijq} \ (m,n,k = 1,2,3,\ldots).
\]

A sequence \(x = (x_{m,n,k})\) is said to be triple analytic if

\[
\sup_{m,n,k} \frac{1}{m+n+k} \left| x_{m,n,k} \right| < \infty.
\]

The vector space of all triple analytic sequences are usually denoted by \(\Lambda^3\). A sequence \(x = (x_{m,n,k})\) is called triple entire sequence if

\[
\left| x_{m,n,k} \right|^{\frac{1}{m+n+k}} \to 0 \quad \text{as} \quad m,n,k \to \infty.
\]

A sequence \(x = (x_{m,n,k})\) is called triple gai sequence if

\[
\left((m+n+k)! \left| x_{m,n,k} \right| \right)^{\frac{1}{m+n+k}} \to 0 \quad \text{as} \quad m,n,k \to \infty.
\]

The triple gai sequences will be denoted by \(\chi^3\).

2. DEFINITIONS AND PRELIMINARIES

A triple sequence \(x = (x_{m,n,k})\) has limit 0 (denoted by \(P - \lim x = 0\)) (i.e)

\[
\left((m+n+k)! \left| x_{m,n,k} \right| \right)^{\frac{1}{m+n+k}} \to 0 \quad \text{as} \quad m,n,k \to \infty.
\]

We shall write more briefly as \(P - \text{convergent to } 0\).

Definition 2.1 An Orlicz function (see [15]) is a function \(M: [0, \infty) \to [0, \infty)\) which is continuous, non-decreasing and convex with \(M(0) = 0\), \(M(x) > 0\), for \(x > 0\) and \(M(x) \to \infty\) as \(x \to \infty\). If convexity of Orlicz function \(M\) is replaced by \(M(x + y) \leq M(x) + M(y)\), then this function is called modulus function.

Lindenstrauss and Tzafriri (see [16]) used the idea of Orlicz function to construct Orlicz sequence space.

A sequence \(g = (g_{mn})\) defined by
\[g_{mn}(v) = \sup\{|v|u - (f_{mnk})(u): u \geq 0\}, m, n, k = 1, 2, \ldots \]

is called the complementary function of a Musielak-Orlicz function \(f \). For a given Musielak-Orlicz function \(f \), (see [17]) the Musielak-Orlicz sequence space \(t_f \) is defined as follows

\[t_f = \{ x \in w^3: |x_{mnk}|^{1/m+n+k} \to 0 \text{ as } m, n, k \to \infty \}, \]

where \(I_f \) is a convex modular defined by

\[I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{mnk}(|x_{mnk}|^{1/m+n+k}), \quad x = (x_{mnk}) \in t_f. \]

We consider \(t_f \) equipped with the Luxemburg metric

\[d(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} f_{mnk}\left(\frac{|x_{mnk}|^{1/m+n+k}}{mnk}\right) \]

is an extended real number.

Definition 2.2 Let \(mnk(\geq 3) \) be an integer. A function \(x:(M \times N \times K) \times (M \times N \times K) \times \cdots \times (M \times N \times K) \times (M \times N \times K) [m \times n \times k \text{ factors}] \rightarrow \mathbb{R}(\mathbb{C}) \) is called a real or complex mnk-sequence, where \(N \), \(R \) and \(C \) denote the sets of natural numbers and complex numbers respectively. Let \(m_1, m_2, \ldots m_r, n_1, n_2, \ldots n_s, k_1, k_2, \ldots, k_t \in \mathbb{N} \) and \(X \) be a real vector space of dimension \(w \), where \(m_1, m_2, \ldots m_r, n_1, n_2, \ldots n_s, k_1, k_2, \ldots, k_t \leq w \). A real valued function

\[d_p(x_{11}, \ldots, x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}) = \| (d_1(x_{11}, 0), \ldots, d_n(x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, 0)) \|_p \]

on \(X \) satisfying the following four conditions:

(i) \(\| (d_1(x_{11}, 0), \ldots, d_n(x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, 0)) \|_p = 0 \) if and only if \(d_1(x_{11}, 0), \ldots, d_n(x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, 0) \) are linearly dependent,

(ii) \(\| (d_1(x_{11}, 0), \ldots, d_m(x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, 0)) \|_p \) is invariant under permutation,

(iii) For \(\alpha \in \mathbb{R}, \)

\[\| (\alpha d_1(x_{11}, 0), \ldots, d_m(x_{m_1m_2\ldots m_pn_1n_2\ldots n_qk_1k_2\ldots k_t}, x_{m_1m_2\ldots m_pn_1n_2\ldots n_qk_1k_2\ldots k_t}, 0)) \|_p = |\alpha| \| (d_1(x_{11}, 0), \ldots, d_n(x_{m_1m_2\ldots m_pn_1n_2\ldots n_qk_1k_2\ldots k_t}, 0)) \|_p \]

(iv) For \(1 \leq p < \infty, \)

\[d_p((x_{11}, y_{11}), (x_{12}, y_{12}), \ldots, (x_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t}, y_{m_1m_2\ldots m_rn_1n_2\ldots n_sk_1k_2\ldots k_t})) \]
= \left(d_X(x_{11}, x_{12}, \ldots, x_m, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t) \right)^p + d_Y(y_{11}, y_{12}, \ldots, y_m, m_2, \ldots, m_p, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t) \right)^{1/p}

(\text{or})

\(d((x_{11}, y_{11}), (x_{12}, y_{12}), \ldots, (x_m, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t), (y_{11}, y_{12}, \ldots, y_m, m_2, \ldots, m_p, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t)) := \sup \{ d_X(x_{11}, x_{12}, \ldots, x_m, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t), \ldots, d_Y(y_{11}, y_{12}, \ldots, y_m, m_2, \ldots, m_p, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t) \} \)

for \(x_{11}, x_{12}, \ldots, x_m, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t \in X, \ y_{11}, y_{12}, \ldots, y_m, m_2, \ldots, m_p, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t \in Y \) is called the \(p \)-product metric of the Cartesian product of \(m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t \) metric spaces is the \(p \)-norm of the \(m \times n \times k \)-vector of the norms of the \(m_1, m_2, \ldots, m_r, n_1, n_2, \ldots, n_s, k_1, k_2, \ldots, k_t \) subspaces.

Definition 2.3 The triple sequence \(\theta_{i, \ell, j} = \{(m_i, n_\ell, k_j)\} \) is called triple lacunary if there exist three increasing sequences of integers such that

\[m_0 = 0, \ h_i = m_i - m_{i-1} \to \infty \text{ as } i \to \infty \]

and

\[n_0 = 0, \ h_\ell = n_\ell - n_{\ell-1} \to \infty \text{ as } \ell \to \infty, \]
\[k_0 = 0, \ h_j = k_j - k_{j-1} \to \infty \text{ as } j \to \infty. \]

Let \(m_{i, \ell, j} = m_i n_\ell k_j, \ h_{i, \ell, j} = h_i h_\ell h_j \), and \(\theta_{i, \ell, j} \) is determine by

\[l_{i, \ell, j} = \{(m, n, k): m_i - 1 < m < m_i \text{ and } n_{\ell-1} < n \leq n_\ell \text{ and } k_{j-1} < k \leq k_j\}, \]
\[q_k = \frac{m_k}{m_{k-1}}, q_\ell = \frac{n_\ell}{n_{\ell-1}}, q_j = \frac{k_j}{k_{j-1}}. \]

Let \(F = (f_{mnk}) \) be a \(mnk \)-sequence of Musielak Orlicz functions such that \(\lim_{u \to 0^+} \sup_{mnk} f_{mnk}(u) = 0 \). Throughout this paper \(\chi_{Auvw}^3 \)-convergence of \(p \)-metric of \(mnk \)-sequence of Musielak Orlicz function determined by \(F \) will be denoted by \(f_{mnk} \in F \) for every \(m, n, k \in \mathbb{N} \).

The purpose of this paper is to introduce and study a concept of triple lacunary strong \(\chi_{Auvw}^3 \)-convergence of \(p \)-metric with respect to a \(mnk \)-sequence of Musielak Orlicz function.

We now introduce the generalizations of triple lacunary strongly \(\chi_{Auvw}^3 \)-convergence of \(p \)-metric with respect a \(mnk \)-sequence of Musielak Orlicz function and investigate some inclusion relations.
Let A denote a sequence of the matrices $A_{uvw} = (a_{m_1 \ldots m_r \ldots m_k \ldots k_t}(uvw))$ of complex numbers. We write for any sequence $x = (x_{mnk})$,

$$y_{ij}(uv) = A_{ij}^{uvw}(x) = \sum_{m_1 \ldots m_r} \sum_{n_1 \ldots n_s} \sum_{k_1 \ldots k_t}(a_{m_1 \ldots m_r n_1 \ldots n_s k_1 \ldots k_t}(uvw)).$$

if it exits for each ijq and uvw. We $A_{uvw}(x) = (A_{ij}^{uvw}(x))_{ijq}$, $Ax = (A_{uvw}(x))_{uvw}$.

Definition 2.4 Let μ be a valued measure on $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and $F = (\varepsilon_{ijq} m_{1 \ldots m_r n_1 \ldots n_s k_1 \ldots k_t})$ be a mnk-sequence of Musielak-Orlicz function, A denote the sequence of four dimensional infinite matrices of complex numbers and X be locally convex Hausdorff topological linear space whose topology is determined by a set of continuous semi norms η and $(\varepsilon_{ijq}(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r - 1, n_1, n_2, \ldots, n_{s - 1}, k_1, k_2, \ldots, k_{t - 1}, 0}))_{ijq} p)$ be a p-metric space, $q = (q_{ijq})$ be triple analytic sequence of strictly positive real numbers.

By $w^3(p - X)$ we denote the space of all sequences defined over $(\varepsilon_{ijq}(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r - 1, n_1, n_2, \ldots, n_{s - 1}, k_1, k_2, \ldots, k_{t - 1}, 0}))_{ijq} p)^\mu$.

In the present paper we define the following sequence spaces:

$$\left[\Lambda_{A f N^\alpha_0}^{3q \eta} \left\| (d(x_{111}), d(x_{122}), \ldots, d(x_{m_1, m_2, \ldots, m_r - 1, n_1, n_2, \ldots, n_{s - 1}, k_1, k_2, \ldots, k_{t - 1}))_{ijq} p)^\mu \right\| \right]$$

$$= \mu \lim_{r \to} \left[f_{ijq} \left((N^\alpha_0(x), (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r - 1, n_1, n_2, \ldots, n_{s - 1}, k_1, k_2, \ldots, k_{t - 1}, 0)))_{ijq} p)^\mu \right] \geq \varepsilon = 0,$$

where

$$N^\alpha_0(x) = \frac{1}{h_{ijq}^{\alpha}} \sum_{t \in r} \sum_{j \in t} \sum_{q \in t} \eta A_{ij}^{uvw} \left(((m_1 \ldots m_r + n_1 \ldots n_s + k_1, k_2, \ldots, k_t) ! x_{m_1 \ldots m_r n_1 \ldots n_s k_1 \ldots k_t})^{1/(m_1 \ldots m_r + n_1 \ldots n_s + k_1, k_2, \ldots, k_t)} \right),$$

uniformly in u, v, w

$$\left[\Lambda_{A f N^\alpha_0}^{3q \eta} \left\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r - 1, n_1, n_2, \ldots, n_{s - 1}, k_1, k_2, \ldots, k_{t - 1}, 0)))_{ijq} p)^\mu \right\| \right]$$

-56-
\[= \mu_{rst}[f_{uvw}(\|N_\theta(x), (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\ldots m_{r-1}n_1n_2\ldots n_{s-1}k_1k_2\ldots k_{t-1}, 0)})\|_p)]^{q_{ijq}} \geq k = 0, \]

where \(e = \left(\begin{array}{ccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right) \).

The main aim of this paper is to introduce the idea of summability of triple lacunary sequence spaces in \(p \)-metric spaces using a three valued measure. We also make an effort to study \(\mu \)-of lacunary triple sequences with respect to a sequence of Musielak Orlicz function in \(p \)-metric spaces and three valued measure \(\mu \). We also plan to study some topological properties and inclusion relation between these spaces.

3. MAIN RESULTS

Proposition 3.1 Let \(\mu \) be a three valued measure,

\[
\left[\chi_{A N^\theta}^{3q_{ijq}} \left(\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\ldots m_{r-1}n_1n_2\ldots n_{s-1}k_1k_2\ldots k_{t-1}, 0)})\|_p \right)^\mu \right]
\]

and

\[
\left[\Lambda_{A N^\theta}^{3q_{ijq}} \left(\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\ldots m_{r-1}n_1n_2\ldots n_{s-1}k_1k_2\ldots k_{t-1}, 0)})\|_p \right)^\mu \right]
\]

are linear spaces.

Proof. It is routine verification. Therefore the proof is omitted.

The inclusion relation between

\[
\left[\chi_{A N^\theta}^{3q_{ijq}} \left(\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\ldots m_{r-1}n_1n_2\ldots n_{s-1}k_1k_2\ldots k_{t-1}, 0)})\|_p \right)^\mu \right]
\]

and

\[
\left[\Lambda_{A N^\theta}^{3q_{ijq}} \left(\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\ldots m_{r-1}n_1n_2\ldots n_{s-1}k_1k_2\ldots k_{t-1}, 0)})\|_p \right)^\mu \right]
\]
Theorem 3.1 Let μ be a three valued measure and A be a mnk-sequence the four dimensional infinite matrices $A^{uv} = (a_{11,...,1t}^{1...n1,...,n1,...,nt}(uvw))$ of complex numbers and $F = (f_{mnk}^{ijq})$ be a mn-sequence of Musielak Orlicz function. If $x = (x_{mnk})$ triple lacunary strong A_{uvw}-convergent of orer α to zero then $x = (x_{mnk})$ triple lacunary strong A_{uvw}-convergent of order α to zero with respect to mnk-sequence of Musielak Orlicz function, (i.e)

$$
\left\{ \begin{array}{l}
\left| x_{mnk} \right| \leq \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu \\
\left| x_{mnk} \right| \leq \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu
\end{array} \right.
$$

Proof. Let $F = (f_{mnk}^{ijq})$ be a mnk-sequence of Musielak Orlicz function and put sup$f_{mnk}^{ijq}(1) = T$. Let

$$
x = (x_{mnk}) \in \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu
$$

and $\epsilon > 0$. We choose $0 < \delta < 1$ such that $f_{mnk}^{ijq}(u) < \epsilon$ for every u with $0 \leq u \leq \delta$ ($i, j, q \in \mathbb{N}$). We can write

$$
\left\{ \begin{array}{l}
\left| x_{mnk} \right| \leq \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu \\
\left| x_{mnk} \right| \leq \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu
\end{array} \right.
$$

where the first part is over $\leq \delta$ and second part is over $> \delta$. By definition of Musielak Orlicz function of f_{mnk}^{ijq} for every ijq, we have

$$
\left| x_{mnk} \right| \leq \epsilon^H_2 + (3T\delta^{-1})^H_2 \left| \left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right}_p \bigg|_\mu.
$$

Therefore

$$
x = (x_{mnk}) \in \left(\left(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m1,m2,\ldots,mr-1,n1,n2,\ldots,nr-1,k1,k2,\ldots,kr-1,0}) \right) \right)_p \bigg|_\mu.
$$
\[d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0) \|_p \]^\mu. \]

Theorem 3.2 Let \(\mu \) be a three valued measure and \(A \) be a mnk-sequence of the four dimensional infinite matrices \(A^{uvw} = (a_{m_1\ldots m_{r-1}n_1\ldots n_{s-1}}^{uvw}) \) of complex numbers, \(q = (q_{ijq}) \) be a mnk-sequence of positive real numbers with \(0 < \inf q_{ijq} = H_1 \leq \sup q_{ijq} = H_2 > \infty \) and \(F = (f_{mnk}) \) be a mnk-sequence of Musielak Orlicz function. If \(\lim_{u,v,w \to \infty} \inf f_{ijq}^{uvw} \frac{f_{ijq}(uvw)}{uvw} > 0 \), then

\[\left[\begin{array}{c} \chi_{3q^\eta}^{AfN^\alpha} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu} = \left[\begin{array}{c} \chi_{3q^\eta}^{AN^\beta} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu}. \]

Proof. If \(\lim_{u,v,w \to \infty} \inf f_{ijq}^{uvw} \frac{f_{ijq}(uvw)}{uvw} > 0 \), then there exists a number \(\beta > 0 \) such that \(f_{ijq}(uvw) \geq \beta u \) for all \(u \geq 0 \) and \(i,j,q \in \mathbb{N} \). Let

\[x = (x_{m_1, \ldots, m_r n_1, \ldots, n_s k_1, k_2, \ldots, k_t}) \in \left[\begin{array}{c} \chi_{3q^\eta}^{AfN^\alpha} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu}. \]

Clearly

\[\left[\begin{array}{c} \chi_{3q^\eta}^{AfN^\alpha} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu} \geq \beta \left[\begin{array}{c} \chi_{3q^\eta}^{AN^\beta} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu}. \]

Therefore

\[x = (x_{m_1, \ldots, m_r n_1, \ldots, n_s k_1, k_2, \ldots, k_t}) \in \left[\begin{array}{c} \chi_{3q^\eta}^{AN^\beta} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu}. \]

By using Theorem 3.1, the proof is complete.

We now give an example to show that

\[\left[\begin{array}{c} \chi_{3q^\eta}^{AfN^\alpha} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu} \neq \left[\begin{array}{c} \chi_{3q^\eta}^{AN^\beta} \| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1,m_2,\ldots,m_{r-1}n_1,n_2,\ldots,n_{s-1}k_1,k_2,\ldots,k_{t-1}}, 0)) \|_p \end{array} \right]^{\mu}. \]
in the case when $\beta = 0$. Consider $A = I$, unit matrix,
\[
\eta(x) = \left((m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t!) \right)\]
\[
|x_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t}|^{1/m_1 \cdots m_r + n_1 \cdots n_s + k_1 k_2 \cdots k_t},
\]
$q_{ijq} = 1$
for every $i, j, q \in \mathbb{N}$ and
\[
f_{mnk}^{ijq}(x) = \left| x_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t} \right|^{1/((m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t!)^{(i+1)(j+1)(q+1)})}
\]
\[
((m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t!)^{1/m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t}
\]
\[
(i, j, q \geq 1, x > 0)
\]
in the case $\beta > 0$. Now we define $x_{ijq} = h_{rst}^{q}$ if $i, j, q = m_r n_s k_t$ for some $r, s, t \geq 1$ and $x_{ijq} = 0$ otherwise. Then we have,
\[
\left[\chi_{A_3 q}^{\alpha q} \left(\left\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2 \cdots m_r - 1 n_1, n_2 \cdots n_s - 1 k_1, k_2 \cdots k_t - 1, 0)) \right) \right\|_p \right]^\alpha \rightarrow 1
\]
as $r, s, t \rightarrow \infty$
and so
\[
x = (x_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t}) \notin \left[\chi_{A_3 q}^{\alpha q} \left(\left\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2 \cdots m_r - 1 n_1, n_2 \cdots n_s - 1 k_1, k_2 \cdots k_t - 1, 0)) \right) \right\|_p \right]^\alpha.
\]

In this section we introduce natural relationship between μ be a three valued measure of triple lacunary A_{uvw}-statistical convergence of order α and μ be a three valued measure of triple lacunary strong A_{uvw}-convergence of order α with respect to mnk-sequence of Musielak Orlicz function.

Definition 3.1 Let μ be a three valued measure and θ be a triple lacunary mnk-sequence. Then a mnk-sequence $x = (x_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t})$ is said to be μ-lacunary statistically convergent of order α to a number zero if for every $\epsilon > 0$, $\mu(\lim_{rst \rightarrow \infty} h_{rst}^{\alpha}|K_{\theta}(\epsilon)|) = 0$, where $|K_{\theta}(\epsilon)|$ denotes the number of elements in
\[
K_{\theta}(\epsilon) = \mu \left\{ (i, j, q) \in I_{rst} : (m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t!) \cdot
\]
\[
|x_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t}|^{1/m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t} \geq \epsilon = 0 \right\}.
\]

The set of all triple lacunary statistical convergent of order α of mnk-sequences is denoted by $(S_{\theta}^{\alpha})^\mu$.

-60-
Let μ be a three valued measure and $A_{uvw} = \left(a_{m_1 \cdots m_r n_1 \cdots n_s k_1 k_2 \cdots k_t} (uvw) \right)$ be an four dimensional infinite matrix of complex numbers. Then a mnk-sequence $x = (x_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t})$ is said to be μ-triple lacunary A-statistically convergent of order α to a number zero if for every $\epsilon > 0$, $\mu(\lim_{rst \to \infty} h_{rst}^{-\alpha} |KA_\theta(\epsilon)|) = 0$, where $|KA_\theta(\epsilon)|$ denotes the number of elements in

$$KA_\theta(\epsilon) = \mu \left\{ (i, j, q) \in I_{rst} : \left((m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t)! \cdot \left| x_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t} \right|^{1/(m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t)} \geq \epsilon = 0 \right\}.$$

The set of all triple lacunary A-statistical convergent of order α of mnk-sequences is denoted by $(S_\alpha^\mu(A))$.

Definition 3.2 Let μ be a three valued measure and A be a mnk-sequence of the four dimensional infinite matrices $A_{uvw} = \left(a_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2 \cdots k_t} (uvw) \right)$ of complex numbers and let $q = (q_{ijl})$ be a mnk-sequence of positive real numbers with $0 < \inf q_{ijl} = H_1 \leq \sup q_{ijl} = H_2 < \infty$. Then a mnk-sequence $x = (x_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t})$ is said to be μ-lacunary A_{uvw}-statistically convergent of order α to a number zero if for every $\epsilon > 0$, $\mu(\lim_{rst \to \infty} h_{rst}^{-\alpha} |KA_{\theta}(\epsilon)|) = 0$, where $|KA_{\theta}(\epsilon)|$ denotes the number of elements in

$$KA_{\theta}(\epsilon) = \mu \left\{ (i, j, q) \in I_{rst} : \left((m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t)! \cdot \left| x_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t} \right|^{1/(m_1 \cdots m_r + n_1 \cdots n_s + k_1, k_2, \ldots, k_t)} \geq \epsilon = 0 \right\}.$$

The set of all μ-lacunary A_{η}-statistical convergent of order α of mnk-sequences is denoted by $(S_\alpha^\mu(A, \eta))$.

The following theorems give the relations between μ-lacunary A_{uvw}-statistical convergence of order α and μ-lacunary strong A_{uvw}-convergence of order α with respect to a mnk-sequence of Musielak Orlicz function.

Theorem 3.3 Let μ be a three valued measure and $F = (f_{ijq})$ be a mnk-sequence of Musielak Orlicz function. Then

$$\left[\chi_{A_{f_{ijq}}}^{\forall q}, \left\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\cdots m_{r-1}n_1n_2\cdots n_{s-1}k_1k_2\cdots k_t-1}, 0)) \right\|_p \right]^\mu \leq \left[\chi_{A_{f_{ijq}}}^{\forall q}, \left\| (d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1m_2\cdots m_{r-1}n_1n_2\cdots n_{s-1}k_1k_2\cdots k_t-1}, 0)) \right\|_p \right]^\mu$$

if and only if $\mu \left(\lim_{ij=\infty} f_{ij}(u) \right) > 0$, $(u > 0)$.

-61-
Proof. Let $\epsilon > 0$ and $x = (x_{m_1\cdots m_r n_1\cdots n_s k_1,\ldots, k_t}) \in \left[\chi_{\mathcal{AF} N^\theta_p}, \|(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r n_1, n_2, \ldots, n_s k_1, k_2, \ldots, k_t-1, 0})\right]_p^\mu$. If $\mu \left(\lim_{i,j,q} f_{ijq}(u) \right) > 0$. (u > 0), then there exists a number $d > 0$ such that $f_{ijq}(\epsilon) > d$ for $u > \epsilon$ and $i, j, q \in \mathbb{N}$. Let

$$\left[\chi_{\mathcal{AF} N^\theta_p}, \|(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r n_1, n_2, \ldots, n_s k_1, k_2, \ldots, k_t-1, 0})\right]_p^\mu \geq h_{\eta}^{-\epsilon} d^n K \theta^\mu(\epsilon).$$

It follows that

$$\left[\chi_{\mathcal{AF} N^\theta_p}, \|(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r n_1, n_2, \ldots, n_s k_1, k_2, \ldots, k_t-1, 0})\right]_p^\mu.$$

Conversely, suppose that $\mu \left(\lim_{i,j,q} f_{ijq}(u) \right) > 0$ does not hold, then there is a number $t > 0$ such that $\mu \left(\lim_{i,j,q} f_{ijq}(t) \right) = 0$. We can select a lacunary mn-sequence $\theta = (m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t)$ such that $f_{ijq}(t) < 3^{-rst}$ for any $i > m_1 \cdots m_r, j > n_1 \cdots n_s, k > k_1, k_2, \ldots, k_t$. Let $A = I$, unit matrix, define the mnk-sequence x by putting $x_{ijq} = t$ if

$$m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s - k_1, k_2, \cdots, k_t < i, j, q < \frac{m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s k_1, k_2, \cdots, k_t + m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s - k_1, k_2, \cdots, k_t}{2}$$

and $x_{ijq} = 0$ if

$$\frac{m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s k_1, k_2, \cdots, k_t + m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s - k_1, k_2, \cdots, k_t}{2} \leq i, j, q \leq m_1, m_2, \cdots, m_r n_1, n_2, \cdots, n_s k_1, k_2, \cdots, k_t.$$

We have

$$x = (x_{m_1 \cdots m_r n_1 \cdots n_s k_1, k_2, \ldots, k_t}) \in \left[\chi_{\mathcal{AF} N^\theta_p}, \|(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r n_1, n_2, \ldots, n_s k_1, k_2, \ldots, k_t-1, 0})\right]_p^\mu.$$

but $x \notin \left[\chi_{\mathcal{AF} N^\theta_p}, \|(d(x_{111}, 0), d(x_{122}, 0), \ldots, d(x_{m_1, m_2, \ldots, m_r n_1, n_2, \ldots, n_s - k_1, k_2, \ldots, k_t-1, 0})\right]_p^\mu.$$

Theorem 3.4 Let μ be a three valued measure and $F = (f_{ijq})$ be a mnk-sequence of Musielak-Orlicz function. Then
\[
\begin{aligned}
&\left[\chi_{AFN^\theta_0}^{3q\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p \\
\geq &\left[\chi_{A^\theta_0}^{\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p
\end{aligned}
\]

if and only if \(\mu \left(\sup_u \sup_{ijq} f_{ijq}(u) \right) < \infty \).

Proof. Let

\[
\begin{aligned}
x &\in \left[\chi_{AFN^\theta_0}^{3q\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p \\
&\leq h^{H_2} h^{-a} \left| KA^\theta_\eta(\epsilon) \right| + |h(\epsilon)|^{H_2}.
\end{aligned}
\]

It follows from \(\epsilon \to 0 \) that

\[
\begin{aligned}
x &\in \left[\chi_{AFN^\theta_0}^{3q\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p.
\end{aligned}
\]

Conversely, suppose that \(\mu \left(\sup_u \sup_{ijq} f_{ijq}(u) \right) = \infty \). Then we have

\[
0 < u_{111} < \cdots < u_{r-1s-1t-1} < u_{rst} < \cdots, \text{ such that } f_{ijq}(u_{rst}) \geq h^{\eta}_{rst} \text{ for } r,s,t \geq 1. \]

Let \(A = I \), unit matrix, define the \(mnk \)-sequence \(x \) by putting \(x_{ijq} = u_{rst} \) if \(i,j,q = m_1 m_2 \cdots m_r n_1 n_2 \cdots n_s \) for some \(r,s,t = 1,2,\ldots \) and \(x_{ijq} = 0 \) otherwise. Then we have

\[
\begin{aligned}
x &\in \left[\chi_{AFN^\theta_0}^{3q\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p \\
&\leq h^{H_2} h^{-a} \left| KA^\theta_\eta(\epsilon) \right| + |h(\epsilon)|^{H_2}.
\end{aligned}
\]

but

\[
\begin{aligned}
x &\notin \left[\chi_{AFN^\theta_0}^{3q\eta} \right]^{\mu} \left[(d(x_{111},0),d(x_{122},0),\ldots,d(x_{m_1,m_2,\ldots,m_r-1,n_1,n_2,\ldots,n_s-1,k_1,k_2,\ldots,k_{t-1},0}) \right]_p.
\end{aligned}
\]

4. CONCLUSION

In this paper we have studied some connections between \(\mu \)-lacunary strong \(\chi_{A_{uvw}}^3 \)-convergence with respect to a \(mnk \) sequence of Musielak Orlicz function and \(\mu \)-lacunary \(\chi_{A_{uvw}}^3 \)-statistical convergence, where \(A \) is a sequence of four dimensional matrices \(A(uvw) = \)
The results of this paper are more general than earlier results.

References

