SHORT COMMUNICATION

On the Faddeev-Sominsky’s algorithm

H. Torres-Silva ¹, J. López-Bonilla ²*, S. Vidal-Beltrán ²

¹ Escuela de Ingeniería Eléctrica y Electrónica, Universidad de Tarapacá, Arica, Casilla 6-D, Chile
² ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
*E-mail address: jlopezb@ipn.mx

ABSTRACT

We comment that the Faddeev-Sominsky’s process to obtain an inverse matrix is equivalent to the Cayley-Hamilton-Frobenius theorem plus the Leverrier-Takeno’s method to construct the characteristic polynomial of an arbitrary matrix. Besides, we deduce the Lanczos expression for the resolvent of the corresponding matrix.

Keywords: Inverse matrix, Characteristic equation, Eigenvalue problem, Adjoint matrix, Faddeev-Sominsky’s method, Leverrier-Takeno’s algorithm, Resolvent of a matrix

1. INTRODUCTION

For an arbitrary matrix \(A_{nxn} = (A^T_j) \) its characteristic equation [1-3]:

\[
p(\lambda) \equiv \lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n = 0,
\]

(Received 27 July 2018; Accepted 06 August 2018; Date of Publication 07 August 2018)
can be obtained, through several procedures [1, 4-7], directly from the condition \(\det (A^r - \lambda I) = 0 \). The approach of Leverrier-Takeno [4, 8-12] is a simple and interesting technique to construct (1) based in the traces of the powers \(A^r, \ r = 1, ..., n \).

On the other hand, it is well known that an arbitrary matrix satisfies (1), which is the Cayley-Hamilton-Frobenius identity [1-3]:

\[
A^n + a_1 A^{n-1} + \cdots + a_{n-1} A + a_n I = 0. \tag{2}
\]

If \(A \) is non-singular (that is, \(\det A \neq 0 \)), then from (2) we obtain its inverse matrix:

\[
A^{-1} = -\frac{1}{a_n} (A^{n-1} + a_1 A^{n-2} + \cdots + a_{n-1} I),
\tag{3}
\]

where \(a_n \neq 0 \) because \(a_n = (-1)^n \det A \).

Faddeev-Sominsky [13-15] proposed an algorithm to determine \(A^{-1} \) in terms of \(A^r \) and their traces, which is equivalent [16] to the Cayley-Hamilton-Frobenius theorem (2) plus the Leverrier-Takeno’s method to construct the characteristic polynomial of a matrix \(A \); we also show the Lanczos expression for the resolvent of \(A \), that is, the Laplace transform of \(\exp(t A) \), to see Sec. 2.

2. LEVERRIER-TAKENO AND FADDEEV-SOMINSKY TECHNIQUES

If we define the quantities:

\[
a_0 = 1, \quad s_k = tr A^k, \quad k = 1, 2, ..., n \tag{4}
\]

then the process of Leverrier-Takeno [4, 8-12] implies (1) wherein the \(a_i \) are determined with the Newton’s recurrence relation:

\[
a_r s_1 a_{r-1} + s_2 a_{r-2} + \cdots + s_{r-1} a_1 + s_r = 0, \quad r = 1, 2, ..., n \tag{5}
\]

therefore:

\[
a_1 = -s_1, \quad 2! \ a_2 = (s_1)^2 - s_2, \quad 3! \ a_3 = -(s_1)^3 + 3 s_1 s_2 - 2 s_3,
\]

\[
4! \ a_4 = (s_1)^4 - 6 \ (s_1)^2 s_2 + 8 s_1 s_3 + 3 \ (s_2)^2 - 6 s_4, \quad etc. \tag{6}
\]

in particular, \(\det A = (-1)^n a_n \), that is, the determinant of any matrix only depends on the traces \(s_r \), which means that \(A \) and its transpose have the same determinant. In [17, 18] we find the general expression:

\[
a_k = \frac{(-1)^k}{k!} \begin{vmatrix}
\begin{array}{cccc}
s_1 & k-1 & 0 & \cdots & 0 \\
s_2 & s_1 & k-2 & \cdots & 0 \\
s_3 & \vdots & \ddots & \ddots & \vdots \\
s_{k-1} & s_{k-2} & \ddots & \ddots & 1 \\
s_k & s_{k-1} & \cdots & \cdots & s_1
\end{array}
\end{vmatrix}, \quad k = 1, ..., n. \tag{7}
\]
The Faddeev-Sominsky’s procedure [13-16, 19, 20] to obtain A^{-1} is a sequence of algebraic computations on the powers A^r and their traces, in fact, this algorithm is given via the instructions:

\[
\begin{align*}
B_1 &= A, & q_1 &= \text{tr} B_1, & C_1 &= B_1 - q_1 I, \\
B_2 &= C_1 A, & q_2 &= \frac{1}{2} \text{tr} B_2, & C_2 &= B_2 - q_2 I, \\
& \vdots & & \vdots & & \vdots \\
B_{n-1} &= C_{n-2} A, & q_{n-1} &= \frac{1}{n-1} \text{tr} B_{n-1}, & C_{n-1} &= B_{n-1} - q_{n-1} I, \\
B_n &= C_{n-1} A, & q_n &= \frac{1}{n} \text{tr} B_n,
\end{align*}
\]

(8)

then:

\[
A^{-1} = \frac{1}{q_n} C_{n-1}.
\]

(9)

For example, if we apply (8) for $n = 4$, then it is easy to see that the corresponding q_r imply (6) with $q_j = -a_j$, and besides (9) reproduces (3). By mathematical induction one can prove that (8) and (9) are equivalent to (3), (4) and (5), showing [16] thus that the Faddeev-Sominsky’s technique has its origin in the Leverrier-Takeno method plus the Cayley-Hamilton-Frobenius theorem.

From (8) we can see that [20]:

\[
C_k = A^k + a_1 A^{k-1} + a_2 A^{k-2} + \ldots + a_{k-1} A + a_k I, \quad k = 1, 2, \ldots, n-1,
\]

(10)

and for $k = n-1$:

\[
C_{n-1} = A^{n-1} + a_1 A^{n-2} + a_2 A^{n-3} + \ldots + a_{n-2} A + a_{n-1} I = -a_n A^{-1},
\]

in harmony with (9) because $a_n = -q_n$. The property $C_n = 0$ is equivalent to (2); if A is singular, the process (8) gives the adjoint matrix of A [2, 3, 14], in fact, $\text{Adj} A = (-1)^{n+1} C_{n-1}$.

If the roots of (1) have distinct values, then the Faddeev-Sominsky’s algorithm allows obtain the corresponding eigenvectors of A [6]:

\[
A \tilde{u}_k = \lambda_k \tilde{u}_k, \quad k = 1, 2, \ldots, n,
\]

(11)

because for a given value of k, each column of:
$$Q_k = \lambda_k^{n-1} I + \lambda_k^{n-2} C_1 + \cdots + C_{n-1}, \quad (12)$$
satisfies (11) [14, 21], and therefore all columns of Q_k are proportional to each other, that is, $\text{rank } Q_k = 1$ [19].

Now we consider the matrix:

$$Q(z) \equiv z^{n-1} I + z^{n-2} C_1 + z^{n-3} C_2 + \cdots + z C_{n-2} + C_{n-1}, \quad Q(\lambda_k) = Q_k, \quad (13)$$

then from (8):

$$Q(z) = z^{n-1} I + z^{n-2} (B_1 + a_1 I) + z^{n-3} (B_2 + a_2 I) + \cdots + z (B_{n-2} + a_{n-2} I) + B_{n-1} + a_{n-1} I,$$

$$= (z^{n-1} + a_1 z^{n-2} + a_2 z^{n-3} + \cdots + a_{n-2} z + a_{n-1}) I$$
$$+ (z^{n-2} I + z^{n-3} C_1 + \cdots + z C_{n-3} + C_{n-2}) A,$$

(1), (13)

$$= \frac{1}{z} \left[p(z) - a_n \right] I + \frac{1}{z} \left[Q(z) - C_{n-1} \right] A = \frac{1}{z} \left[p(z) + Q(z) A \right] - \left[a_n I + B_n \right].$$

(8)

but from (10) we have the relation $B_n + a_n I = 0$, therefore (14) implies the following Lanczos formula [20-25] for the resolvent of A:

$$\frac{1}{z I - A} = \frac{Q(z)}{p(z)}. \quad (15)$$

If A is non-singular, then (15) for $z = 0$ implies (9). McCarthy [26] used (15) and the Cauchy’s integral theorem in complex variable to show the Cayley-Hamilton-Frobenius identity indicated in (2). We note that (15) is the Laplace transform of $\exp(t A)$ [25].

If the roots of (1) have distinct values, then from (15) the Faddeev-Sominsky’s method allows construct the proper vectors of A, in fact, they are given via the expression [14, 21]:

$$A Q_k = \lambda_k Q_k, \quad Q_k \neq 0, \quad k = 1, \ldots, n, \quad (16)$$
in according with (11).

The coefficients a_k defined in (6) and (7) can be written in terms of the Bell polynomials [27-33], in fact [34]:

$$a_m = \frac{1}{m!} Y_m (-0! s_1, -1! s_2, -2! s_3, -3! s_4, \ldots, -(m-2)! s_{m-1}, -(m-1)! s_m).$$

(17)

On the other hand, Sylvester [35-38] obtained the following interpolating definition of $f(A)$:

$$f(A) = \sum_{j=1}^n f(\lambda_j) \prod_{k \neq j} \frac{A - \lambda_k I}{\lambda_j - \lambda_k}, \quad (18)$$
which is valid if all eigenvalues are different from each other. Buchheim [39] generalized (18) to multiple proper values using Hermite interpolation, thereby giving the first completely general definition of a matrix function. We comment that with (18) also is possible to prove the relation (15) for the resolvent of A.

3. CONCLUSIONS

It is interesting to mention that the method (8) was successfully applied [40] in general relativity to study the embedding of spacetimes into pseudo-Euclidean spaces. The Leverrier-Takeno and Faddeev-Sominsky methods need $\frac{1}{2}(n - 1)(2n^3 - 2n^2 + n + 2)$ and $(n - 1)n^3$ arithmetic operations to determine the coefficients a_k, respectively. Gower [19] indicates that the procedure (8) is subject to unacceptable rounding errors and therefore is unsuitable for numerical work, hence such algorithm does have algebraic interest.

References

