SHORT COMMUNICATION

Bound State Solutions of the s-wave Schrodinger Equation for Generalized Woods-Saxon plus Mie-Type Nuclei Potential within the framework of Nikiforov-Uvarov Method

Benedict Iserom Ita1 and Louis Hitler1,2,*

1Physical/Theoretical Chemistry Research Group, Department of Pure and Applied Chemistry, University of Calabar, P.M.B 1115 Calabar, Cross River State, Nigeria

1,2National Centre For Nanoscience and Technology, University of Chinese Academy of Sciences UCAS, Beijing, China

*E-mail address: louis@nanoctr.cn

ABSTRACT

The solutions of the Schrödinger equation with Generalized Woods-Saxon plus Mie-type potentials (GWSMP) have been presented using the Pekeris-like approximation of the coulomb term and parametric Nikiforov-Uvarov (NU) method. The bound state energy eigenvalues and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Special cases of potential consideration have also been discussed.

Keywords: Woods-Saxon, Mie-type, Schrodinger, Bound state, Eigen functions, Nikiforov-Uvarov

1. INTRODUCTION

It is well known that the exact solutions play an important role in quantum mechanics since they contain all the necessary information regarding the quantum model under study.
The exact solutions of the Schrödinger equation are only possible for a hydrogen atom and for a harmonic oscillator in three dimensions (Dong, 2007). However, when a particle is in a strong potential field, the relativistic effect must be considered, which gives the correction for non-relativistic quantum mechanics (Zhang, 2005). Taking the relativistic effects into account, a particle in a potential field should be described with the Klein-Gordon (KG) and Dirac equations. In recent years, there has been an increased interest in finding exact solutions to Schrödinger, KG, Dirac and Salpeter equations for various potential schemes (Ihkdair, 2009; Louis et al., 2016). The Woods-Saxon (WS) potential and its various modifications have played an essential role in microscopic physics in the determination of the energy level spacing, particle number dependence of energy quantities and universal properties electron distributions in atoms, nuclei and atomic clusters since it can be used to describe the interaction of neutron with one heavy-ion nucleus and also for optical potential model (Sever, 2005; Ita et al., 2017).

Furthermore, within the framework of the spin and pseudospin symmetry, the analytical solutions of the Woods-Saxon and its generalized versions are solved for Dirac equation and obtained the bound state energies with their corresponding wave functions for the particle and antiparticle (Candemir, 2014). The generalized symmetric Woods-Saxon (GSWS) potential model is more flexible and useful model than the Woods-Saxon potential in order to examine the scattering, bound and quasi-bound state solutions of the wave equations so that the GSWS potential can be applied to physical phenomena such as the scattering, transmission resonance, supercriticality, decay, fusion, fission etc. (Bayrak et al., 2015). GSWS potential in one dimension in case of the scattering, bound and quasi-bound states. Moreover, we examine correlations between the potential parameters with the reflection-transmission coefficients in the case of scattering state, with the energy eigenvalues and their corresponding wave functions in the case of bound state, and finally with the resonance energy eigenvalues and their corresponding wave functions in the case of quasi-bound states (Bayrak et al., 2015). Recently our group have attempt to study the bound state solutions of Klein-Gordon, Dirac and Schrödinger equations using a combined or mixed potentials. Some of which includes Woods-Saxon plus Attractive Inversely Quadratic potential (WSAIQP) (Ita et al., 2017), Manning-Rosen plus a class of Yukawa potential (MRCYP) (Louis et al., 2017), generalized wood-saxon plus Mie-type potential (GWSMP) (Ita et al., 2017), Kratzer plus Reduced Pseudoharmonic Oscillator potential (KRPHOP) (Louis et al., 2017). In this study, we are going to continue with our previous work on approximate s-wave solutions of the Schrodinger equation for Generalized Woods-Saxon plus Mie-type molecular potentials (GWSMP) using the Nikiforov-Uvarov method.

2. REVIEW OF PARAMETRIC NIKitgorov-UVAROV METHOD

The NU method is based on the solutions of a generalized second order linear differential equation with special orthogonal functions. The Nikiforov-Uvarov method has been successfully applied to relativistic and nonrelativistic quantum mechanical problems and other field of studies as well [6-9].The hypergeometric NU method has shown its power in calculating the exact energy levels of all bound states for some solvable quantum systems.

\[\Psi_n''(s) + \frac{\varphi(s)}{\sigma(s)} \Psi_n'(s) + \frac{\varphi(s)}{\sigma^2(s)} \Psi_n(s) = 0 \] (1)
where $\sigma(s)$ and $\overline{\sigma}(s)$ are polynomials at most second degree and $\overline{\tau}(s)$ is first degree polynomials. The parametric generalization of the N-U method is given by the generalized hypergeometric-type equation

$$
\psi''(s) + \frac{c_1-c_2 s}{s(1-c_3 s)} \psi'(s) + \frac{1}{s^2(1-c_3 s)^2} [-\epsilon_1 s^2 + \epsilon_2 s - \epsilon_3] \psi(s) = 0
$$

(2)

Thus eqn. (1) can be solved by comparing it with equation (2) and the following polynomials are obtained

$$
\overline{\tau}(s) = (c_1 - c_2 s), \sigma(s) = s(1 - c_3 s), \overline{\sigma}(s) = -\epsilon_1 s^2 + \epsilon_2 s - \epsilon_3
$$

(3)

The parameters obtainable from equation (3) serve as important tools to finding the energy eigenvalue and eigenfunctions. They satisfy the following sets of equation respectively

$$
c_2 n - (2n+1)c_3 + (2n+1)(\sqrt{c_9} + c_3 \sqrt{c_8}) + n(n-1)c_3 + c_7 + 2c_3c_8 + 2\sqrt{c_8}c_9 = 0
$$

(4)

$$
(c_2 - c_3)n + c_3 n^2 - (2n+1)c_5 + (2n+1)(\sqrt{c_9} + c_3 \sqrt{c_8}) + c_7 + 2c_3c_8 + 2\sqrt{c_8}c_9 = 0
$$

(5)

While the wave function is given as

$$
\psi_n(s) = N_{n,t} S^{c_12}(1 - c_3 s)^{-c_12} e_{c_1}^{c_2} c_3 \ P_n \left((c_{10} - c_{11} - 1) (1 - 2c_3 s) \right)
$$

(6)

where

$$
c_4 = \frac{1}{2} (1 - c_1), c_5 = \frac{1}{2} (c_2 - 2c_3), c_6 = c_5^2 + \epsilon_1, c_7 = 2c_4c_5 - \epsilon_2, c_8 = c_4^2 + \epsilon_3,
$$

$$
c_9 = c_3c_7 + c_3^2 c_8 + c_6, c_{10} = c_1 + 2c_4 + 2\sqrt{c_8}, c_{11} = c_2 - 2c_5 + 2(\sqrt{c_9} + c_3 \sqrt{c_8})
$$

$$
c_{12} = c_4 + \sqrt{c_8}, c_{13} = c_5 - (\sqrt{c_9} + c_3 \sqrt{c_8})
$$

(7)

and P_n is the orthogonal polynomials.

Given that $P_n^{(\alpha, \beta)} = \sum_{r=0}^{n} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(\alpha+r+1)\Gamma(\beta+r+1)(n-r)!} \left(\frac{x-1}{2} \right)^r \left(\frac{x+1}{2} \right)^{n-r}$

(8)

This can also be expressed in terms of the Rodriguez’s formula

$$
P_n^{(\alpha, \beta)}(x) = \frac{1}{2^n n!} (x - 1)^{-\alpha}(x + 1)^{-\beta} \left(\frac{d}{dx} \right)^n ((x - 1)^{\alpha}(x + 1)^{\beta})
$$

3. SOLUTION OF S-WAVE SCHRODINGER EQUATION WITH GENERALIZED WOODS-SAXON PLUS MIE-TYPE POTENTIAL (GWSMP)

The s-wave Schroedinger Equation with vector $V(r)$, potential is given as

$$
\frac{d^2 R(r)}{dr^2} + \frac{2\mu}{\hbar^2} (E - V(r)) R(r) = 0
$$

(9)

The generalized Woods-Saxon Potential is given as
Similarly, the Mie-type Potential is given as,

\[
V(r) = \frac{\nu_1 e^{-2ar}}{(1-e^{-2ar})^2} - \frac{\nu_2 e^{-4ar}}{(1-e^{-2ar})^2}
\]

Substituting eq. (12) into eq. (9), we have

\[
\frac{d^2 R(s)}{dr^2} + \frac{2\mu}{\hbar^2} \left[(2\beta^2 - B + P - K)s^2 + (-H - B + \phi - 4\beta^2)\right] R(s) = 0
\]

where

\[
-\beta^2 = \left(\frac{\mu E}{4\alpha^2 h^2} \right), \quad B = \left(\frac{\mu}{2\alpha^2 h^2} \right) V_1, \quad P = \left(\frac{\mu}{2\alpha^2 h^2} \right) V_2, \quad \phi = \left(\frac{\mu}{\alpha^2 h^2} \right) C, \quad H = \left(\frac{\mu}{\alpha^2 h^2} \right) A, \quad J = \left(\frac{\mu}{\alpha^2 h^2} \right) B, \quad K = \left(\frac{\mu}{\alpha^2 h^2} \right) C
\]
The above equation can be solved explicitly and the energy eigen spectrum of GWSMTP becomes

\[
E = \frac{2e^2h^2}{\mu} \left\{ \left[\left(\frac{\mu}{2a^2h^2} \right) C + \left(\frac{\mu}{a^2h^2} \right) C + \left(\frac{\mu}{h^2} \right) B \right] - \left(\frac{\mu}{2a^2h^2} \right) V_1 + 3 \left(\frac{\mu}{a^2h^2} \right) A \right\} - \left(n^2 + \frac{n+1}{2} \right) - (2n+1) \frac{\mu^2}{4a^2} \left(\frac{\mu}{2a^2h^2} \right) C - 2 \left(\frac{\mu}{h^2} \right) B - \left(\frac{\mu}{2a^2h^2} \right) V_2
\]
\[
\left(2 \left(\frac{\mu}{h^2} \right) B + \left(\frac{\mu}{2a^2h^2} \right) C - \left(\frac{\mu}{ah^2} \right) A \right)
\]

(18)

Eq. (18) is the bound state eigen energy of the superposed potentials under investigation.

Eigen function consideration

\[
\rho(s) = s^u(1 - qs)^v
\]

(19)

where \(u = 2\beta^2 - R - B + \lambda \), and \(v = 2 \frac{1}{\sqrt{4} - B - H - P + \lambda} \)

\[
X_n(s) = p_n^{(u,v)}(1 - 2s),
\]

(20)

\[
\varphi(s) = s^{u/2}(1 - s)^{1+v/2}
\]

(21)

Using equation (16) we get the function \(\chi(s) \) as

\[
\chi(s) = P_n^{(u,v)}(1 - 2s),
\]

(22)

where \(P_n^{(u,v)} \) are Jacobi polynomials. Lastly,

\[
\varphi(s) = s^{c_12}(1 - c_3 s)^{-c_{12} - c_{13} / c_3},
\]

(23)

and using equation (16) we get

\[
\varphi(s) = s^{u/2}(1 - s)^{v-1/2},
\]

(24)

We then obtain the radial wave function from the equation

\[
R_n(s) = N_n \varphi(s) \chi_n(s).
\]

As

\[
R_n(s) = N_n s^{u/2} (1 - s)^{(v-1)/2} P_n^{(u,v)}(1 - 2s),
\]

(25)
where n is a positive integer and N_n is the normalization constant.

4. DISCUSSION

Special Cases of Potential Considerations:

CASE I: when $V_1 = V_2 = 0$ eq. (18) is reduced to bound state equation with a pure Mie-type potential given as follows

$$E = \frac{2\alpha^2\hbar^2}{\mu} \left\{ \left(\frac{\mu}{\alpha^2\hbar^2} \right) C + \left(\frac{\mu}{\alpha^2\hbar^2} \right) C + 4 \left(\frac{\mu}{\hbar^2} \right) B \right\} - \left(\left(\frac{\mu}{\alpha^2\hbar^2} \right) A \right) - \left(n^2 + n + \frac{1}{2} \right) \sqrt{\frac{1}{4} \left(\frac{\mu}{\alpha^2\hbar^2} \right) C - 2 \left(\frac{\mu}{\hbar^2} \right) B}$$

$$\left(\frac{\mu}{\hbar^2} \right) B + \left(\frac{\mu}{2\alpha^2\hbar^2} \right) C - \left(\frac{\mu}{\alpha^2\hbar^2} \right) A \right) \right\} (26)$$

CASE II: when $A = B = C = 0$ eq. (18) is reduced to bound state solution with a pure Generalized Woods-saxon equation given as

$$E = \frac{2\alpha^2\hbar^2}{\mu} \left\{ \left(\frac{\mu}{2\alpha^2\hbar^2} \right) V_1 \right\} - \left(n^2 + n + \frac{1}{2} \right) \sqrt{\frac{1}{4} \left(\frac{\mu}{2\alpha^2\hbar^2} \right) V_2}$$

$$\left(n^2 + n + \frac{1}{2} \right) + 2 \sqrt{\frac{1}{4} \left(\frac{\mu}{2\alpha^2\hbar^2} \right) V_2} \right\} (27)$$

5. CONCLUSION

In this paper, we investigate Approximate the bound state solutions of Schrodinger equation with Mie-type plus Generalized woods-saxon potentials be applying the pekeris-like approximation scheme. We obtained energy eigenvalues and the corresponding unnormalized wave function in terms of Jacobi polynomials. Special cases for the potentials are discussed indicating usefulness for other physical systems.

References

(Received 14 June 2017; accepted 03 July 2017)