Isolation and Characterization of 4’,7-dihydroxy isoflavone from *Indoneesiella echioides* (L.) Nees plant leaves

A. Elaiyaraja¹*, G. Chandramohan²

¹Department of Chemistry, A.V.V.M. Sri Pushpam College, Poondi, Thanjavur - 613 503, Tamil Nadu, India
²Department of Chemistry, Jairams Arts and Science College, Karur - 3, Tamil Nadu, India

*E-mail address: raja_mscchem@rediffmail.com
Mobile: 9043571103

ABSTRACT

The present study was carried out to isolation and characterization of flavones compounds present in the *Indoneesiella echioides* (L) Nees leaves. *Indoneesiella echioides* (L) Nees is an important herb widely distributed in south India. This is commonly known as False Water willow. *Indoneesiella echioides* (L) Nees is a traditional Indian medicine; the whole plant is highly medicinal value such as the leaf juice of this plant is used to cure fever. Different pharmacological properties of *Indoneesiella echioides* have already been reported. The plant was extracted for various solvents in increasing order of polarity from using n-hexane, chloroform, ethyl acetate, acetone, ethanol, butanol and methanol. Thus, the present study was performed to investigate the preliminary phytochemical screening, isolation and characterization of flavones compounds present in the *Indoneesiella echioides* leaves using FT-IR, GC-MS, NMR and MASS spectral techniques.

Keywords: *Indoneesiella echioides* (L) Nees; Phytochemical screening; Isolation; Characterization; FT-IR; GC-MS; NMR; MASS Spectra
1. INTRODUCTION

Indoneesiella echioides (L) Nees (Acanthaceae), also known as *Andrographis echioides* (L) Nees. This is commonly known as False Water Willow, is an abundantly growing in south India. *Indoneesiella echioides* (L) Nees is highly medicinal important. The genus of *Indoneesiella* is used in goiter, liver diseases [1], fertility problems, bacterial [2], malarial and fungal disorders.

The leaf juice of this plant is used to treating fever [3]. Several *Indoneesiella* species (about 40 species) has been used in treatment of influenza, malaria, dyspepsia and respiratory diseases. The *Indoneesiella* species also used to antidote for poisonous stings of some insects[4,5]. The leaf juice is mixed and boiled with coconut oil used to control falling and greying of hair [6]. Phytochemistry of *Indoneesiella echioides* has been investigated and reported to contain several flavonoids [7,8] and labdane diterpinoids [9-14].

In previous literatures are reported to only flavonoids as a major component in *Indoneesiella echioides* (L) Nees extracts [15-18]. It has been reported that variety of phytoconstituents like phenols, coumarins, lignans, essential oil, monoterpenes, carotenoids, glycosides, flavonoids, organic acids, lipids, alkaloids and xanthene’s [19].

The main focus of this study was Isolation and Characterization of Flavone compounds present in the *Indoneesiella echioides* (L) Nees leaves using FT-IR, GC-MS, NMR and MASS Spectral techniques.

2. MATERIALS AND METHOD

2.1. Collection of plant materials

The leaves of *Indoneesiella echioides* (L) Nees was collected from Poondi village, Thanjavur District, Tamil Nadu. The botanical identity (Voucher No: A.A.R 001 on 04-02-2013) of the plant was confirmed by Dr. S. John Britto, Rapina t Herbarium, St. Joseph’s College, Tiruchirappalli.

2.2. Preparation of Extracts

The fine powder (5 kg) was extracted with 95% ethanol at room temperature for ten days. The extract were filtered and concentrated under reduced pressure in a rotary evaporator and extracted for various solvents in increasing order of polarity from using n-hexane, chloroform, ethyl acetate, acetone, ethanol, butanol and methanol.

After that the extract was taken in a beaker and kept in a water bath and heated at 30-40 °C till all the solvents got evaporated. All the extracts were tested for the presence bioactive compounds by using standard methods. The dried extract was subjected to preliminary phytochemicals, isolation and characterization of flavones compounds present in the *Indoneesiella echioides* (L) Nees leaves.

2.3. Phytochemical screening

The preliminary phytochemical analysis of *Indoneesiella echioides* (L) Nees was carried out as per standard methods (Table.1).
Table 1. Preliminary phytochemical constituents of *Indoneesiella echioides* (L) Nees leaves.

<table>
<thead>
<tr>
<th>S.N</th>
<th>Phytochemicals</th>
<th>Hexane Extract</th>
<th>Chloroform Extract</th>
<th>Ethyl acetate Extract</th>
<th>Acetone Extract</th>
<th>Ethanol Extract</th>
<th>Butanol Extract</th>
<th>Methanol Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>Flavonoids</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>3.</td>
<td>Terpenes</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Triterpenoid saponins</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Saponins</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>6.</td>
<td>Glycosides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Steroids</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Carbohydrates</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Phenolic compounds</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>10.</td>
<td>Tannins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>Amino acids</td>
<td>-</td>
<td>-</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
<td>-</td>
<td>Present</td>
</tr>
</tbody>
</table>

3. ANALYSIS OF PHYTOCOMPONENTS

The 95% ethanolic extract was subjected to column chromatographic separation eluted with chloroform/methanol system (4.75:0.25, 4.85:0.15, and 4.95:0.05). The fraction was crystallized with methanol to obtain white colour solid crystal. The isolate compounds were identified by spectral studies.

4. CHARACTERIZATION OF 4',7-DIHYDROXY ISOFLAVONE

4.1. GC-MS Analysis

The GC-MS analysis of ethyl acetate extract of *Indoneesiella echioides* (L) Nees leaves shows the RT value is 16.3 and Peak area is 50.4% composition. The data was compared with the spectrum of known components stored in the NIST library. The name, molecular weight and structure of the components of the test materials were ascertained. The results were clearly indicating the 4',7-dihydroxy isoflavone (Fig. 1).
4. 2. FT-IR Analysis

IR (KBr)ν - The absorption appeared at 3433 cm\(^{-1}\) indicating the νOH vibration of hydrogen bonds, the absorption 2925 and 2852 cm\(^{-1}\) indicating the νC-H vibration of CH\(_2\) protons, the absorption 1625 cm\(^{-1}\) indicating the νC=C vibration of C=C group and the absorption 1284 cm\(^{-1}\) indicating νOH vibration of OH group present in the molecule.

Table 2. \(^1\)H and \(^{13}\)C- NMR data of compound in acetone - d6

<table>
<thead>
<tr>
<th>S.N</th>
<th>Position</th>
<th>δ(_H) (J, Hz)</th>
<th>δ(_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>158.31</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>6.831, s</td>
<td>105.94</td>
</tr>
<tr>
<td>3.</td>
<td>5</td>
<td>8.037, d, (2.5)</td>
<td>102.45</td>
</tr>
<tr>
<td>4.</td>
<td>6</td>
<td>7.027, d, (2), 6.981, d, (2)</td>
<td>126.04</td>
</tr>
<tr>
<td>5.</td>
<td>7</td>
<td>163.76</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>8</td>
<td>6.986, d, (2.5)</td>
<td>126.07</td>
</tr>
<tr>
<td>7.</td>
<td>9</td>
<td>160.63</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>10</td>
<td>105.93</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>1'</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>2' and 6'</td>
<td>7.581, d, (6.5)</td>
<td>128.84</td>
</tr>
<tr>
<td>11.</td>
<td>3' and 5'</td>
<td>8.009, d, (7.5)</td>
<td>131.48</td>
</tr>
<tr>
<td>12.</td>
<td>4'</td>
<td>164.01</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>C=O</td>
<td>178.94</td>
<td></td>
</tr>
</tbody>
</table>

4. 3. \(^1\)H-NMR Analysis

\(^1\)H NMR (CDCl\(_3\), TMS) 500 MHz - The peaks appeared at δppm: 6.831 (1H, s, H-3), 8.037 (1H, d, H-5), 7.027 (1H, d, H-6), 6.986 (1H, d, H-8), 7.581 (2H, d, H-2', H-6') and 8.009 (2H, d, H-3', H-5').

The peaks at δ 7.027, H-6 (J = 2 Hz) and 6.981, H-6, (J = 2 Hz) of two aromatic protons present in the phenol hydroxyl group showing ortho/meta coupled doublet of doublets, peak at δ 6.986, H-8, (J = 2.5 Hz) also showing ortho coupled doublet, peak δ 8.037, H-5, (J = 2.5) shows meta coupled doublet and the peak δ 6.831, H-3 shows one singlet in the ring A.

The peaks at δ 7.581, H-2' & H-6', (J = 6.5) and δ 8.009, H-3' & H-5', (J = 7.5) showing two ortho/meta coupled doublets appeared in the ring B.
4.4. 13C-NMR Analysis

13C NMR (CDCl$_3$, TMS) 500 MHz - The peaks appeared at δ ppm: 158.31 (C-2), 105.94 (C-3), 178.94 (C=O), 102.45 (C-5), 126.04 (C-6), 163.76 (C-7), 126.07 (C-8), 160.63 (C-9), 105.93 (C-10), 115.43 (C-1'), 128.84 (C2' & C6'), 131.43 (C-3' & 5') and 164.01 (C-4').

The 13C-NMR spectrum showed the presence of 13 carbon skeleton including the overlapping peaks of C-3' & C-5' and C-2'& C-6' thus indicating the presence of 15-carbon skeleton. The 1H and 13C-NMR values for all the carbons were assigned on the basis of HSQC and HMBC correlations. The carbonyl carbon is bonded to C-4 position (δ C 178.94 (C=O)) when the carbonyl is not hydrogen bonded. Carbon bonded to the hydroxyl group C-7 and C-4' appeared at δ 163.76 and δ 164.01. The 13C NMR resonance at δ C 126 which showed HMBC correlations with 1H NMR resonance at H-6 & H-8 was attributed to C-7. In the 1H NMR spectrum of the compound shows the aromatic proton signals of two m-coupled doublets of δ 8.037, d, and δ 6.986, d, (each $J = 2.5$ Hz) showing HSQC correlations to the carbon resonances at δ C-5 102.45 and δ C-8 126.07 was attributed to C-6 and C-7.

4.5. MASS Spectral Analysis

![Image of GC-MS spectrum](image.png)

Fig. 1. GC-MS spectrum of 4',7-dihydroxy isoflavone.
Fig. 2. IR-Spectrum of 4',7-dihydroxy isoflavone
Fig. 3. 1H-NMR - Spectrum of 4',7-dihydroxy isoflavone
Fig. 3(a). Enlarged 1H-NMR - Spectrum of 4',7-dihydroxy isoflavone
Fig. 4. 13C- NMR - Spectrum of 4',7-dihydroxy isoflavone
Fig. 5. Mass Spectrum of 4',7-dihydroxy isoflavone
Fig. 6. Structure of 4',7-dihydroxy isoflavone (Daidzein).

Mass spectra of isolated compound show molecular ion m/z 238 [M+] corresponding to the molecular formula C_{15}H_{10}O_{4}. Based on the above spectral and chemical studies it was suggested that compound having an isoflavonoid skeleton having two phenolic hydroxyl groups. The placement of the phenolic hydroxyl groups were identified at C-7 and C-4' positions. Thus, based on the above spectral data, structure of was assigned as 4',7-dihydroxyisoflavone (Daidzein) consistent to the reported literature values [20].

5. RESULT AND DISCUSSION

4',7-dihydroxyisoflavone (Daidzein) has been isolated successfully from the medicinal plant *Indoneesiella echioides* (L) Nees leaf under present study. Similarly De-Yang Shen et al [21], reported that the new compounds of androechioside A (5,8,2'-trihydroxy-7-methoxyflavone-5-O-β-D-glucopyranoside), androechioside B (2R)-5,2'-dihydroxy-7-methoxyflavanone-5-O-β-D-glucopyranoside), androechioside A (2-O-β-D-glucopyranosyl-4-methoxy-2,4,6-trihydroxybenzoate), androechioside B (methyl 3-(2-hydroxyphenyl)-3-oxopropanoate 2-O-β-D-glucopyranoside) are isolated and structurally elucidated by spectral analysis and chemical transformation and 37 known compounds were identified to be, 2',6-dihydroxyacetophenone 2'-O-β-D-glucopyranoside, echioiinin 5-O-β-D-glucopyranoside, echioiinin, pinostrobin, andrographidine C, dihydroechioiinin, tectochrysin 5-glucoside, methyl salicylate glucoside,7,8-dimethoxy-5-hydroxyflavone, 5,7,8-trimethoxyflavone, skullcapflavone I 2'-methyl ether, acetophenone-2-O-β-D-glucopyranoside, androchin, skullcapflavone I 2'-O-β-D-glucopyranoside, tectochrysin, 5,7,2'-trimethoxyflavone, echioiinin, skullcapflavone I, 5,7-dimethoxyflavone, negletein 6-O-β-D-glucopyranoside, andrographidine E, 4-hydroxy-3-methoxy-trans-cinnamic acid methyl ester, 4-hydroxybenzaldehyde, 4-hydroxy-trans-cinnamic acid methyl ester, O-coumaric acid, 2,6-dihydroxybenzoic acid, 132-hydroxy-(132-R)-phaeophytin, (E)-phytyl-epoxide, phytol, phytene 1,2-diol, (+)-dehydrovomifoliol,3β-hydroxy-5α, 6α, epoxy-7-megastigmen-9-one, β-sitosterol, β-sitosterol-3-O-β-D-glucopyranoside, squalene, 1H-indole-3-carbaldehyde, and loliolide by comparison of their physical and spectral data with those reported in the literature.
6. CONCLUSION

In the present study preliminary phytochemical analysis of the *Indoneesiella echioides* (L) Nees revealed the presence of flavonoids, alkaloids, terpenoids, triterpenoids saponins, saponins, phenolic compound, sterols and amino acids are qualitatively analysed and the results are listed in Table 1. The GC-MS studies of ethyl acetate fraction of *Indoneesiella echioides* (L) Nees leaves was clearly indicate that the 4',7-dihydroxyisoflavone (Daidzein) and also further confirmed by IR, 1H, 13C-NMR and MASS spectral data’s. The isolation of the characterized flavonoids would be useful to prepare plant based pharmaceutical preparation to treat various complications linked with human diseases.

Acknowledgement

I wish to express my deep sense of gratitude and most sincere thanks to Honourable Resource Person Dr. G. Chandramohan, Principal, Jairams Arts and Science College, Karur - 3, Tamil Nadu, India for providing support to finish my research work.

Reference

(Received 25 August 2016; accepted 12 September 2016)