Synthesis and \textit{in vitro} antimicrobial evaluation of some new chalcones containing vinyl ester group and substituted alkyl chain

Vinay S. Sharma*, R. B. Patel**
Chemistry Department, K. K. Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad - 380008, Gujarat, India
***E-mail address: vinaysharma3836@gmail.com, roshanpatel770@gmail.com

ABSTRACT

A novel series of chalconyl vinyl ester based derivatives were designed and synthesized. The newly synthesized compounds were studied for efficacy against several bacteria (\textit{E. Coli, P. Aeruginosa, S. Aureus, S. Pyrogenus}) and fungi (\textit{C. Albicans, A. Niger, Clavatus}) using the broth dilution technique. Chalcones were prepared by treatment of 4-iodo acetophenone with 4-hydroxy benzaldehyde by Claisen-Schimdt condensation reaction. Various chalconyl vinyl ester derivatives (C$_1$-C$_8$) were prepared by reaction of chalcone with 4-n-alkoxy cinnamic acids derivatives. Compound C$_8$ shows the best bioactive desired antibacterial analogue with less MIC value against different tested strains. All the final synthesized compounds were characterized by IR, 1H NMR, and elemental analysis.

Keywords: Antibacterial; Antifungal; Chalcone; Vinyl ester

1. INTRODUCTION

Chalcones have been reported to possess various biological activities [1]. They have also been reported as good chelating agents [2]. There is growing interest in the pharmacological potential of natural products is chalcones constitute an important group of natural products.
Chemically, they consist of open chain flavonoids in which the two aromatic rings are joined by a three carbon [3-8]. The presence of a reactive α, β unsaturated keto function in chalcones is found to be responsible for their antimicrobial activity [9-10].

In recent years a variety of chalcones have been reviewed for their cytotoxic, anticancer chemopreventive and mutagenic as well as antiviral, insecticidal and enzyme inhibitory properties [11-16]. A number of chalcones having hydroxyl, alkoxy groups in different position have been reported to possess anti-bacterial, antiulcer, antifungal, antioxidant, vasodilatory, antimitotic, antimalarial, antileshmanial and inhibition of chemical mediators release, inhibition of leukotriene B4, inhibition of tyrosinase and inhibition of aldose reductase activities [17-22].

Appreciation of these findings motivated us to synthesize chalcones as a potential template for antimicrobial agents. Chalcones are product of condensation of substituted aromatic aldehydes with simple or substituted acetophenones in presence of alkali [23]. Many of them show antiinflammatory, anticonvulsants, immunotropic, hypolipidemic, antitumor, antiulcer and analgesic [24-26].

Cinnamic acid and its derivatives are used in various fields such as medicines, perfumery, polymer, cosmetics and agricultural fields [27-30]. They are also used as matrices for ultraviolet laser desorption mass spectrometry of protein and as useful intermediates for the synthesis of heterocyclic compounds [31-34].

Recently, we reported in our previous work to presently synthesized compound shows liquid crystalline property and also exhibits good thermal stability as well as mesophase length respectively [35-36]. Here in this present article, we have focused on the biological activity of present synthesized series and study the effect with varying side chain. So we have decided to synthesized chalcones derivatives and condensed with 4-n-alkoxy cinnamic acid.

2. CHEMISTRY
2.1. Experimental
2.1.1 Synthesis

4-n-alkoxy cinnamic acids (A) were synthesized by the alkylation of 4-hydroxy benzaldehyde to form 4-alkoxy benzaldehyde and further reaction with malonic acid in pyridine in presence of few drops of piperidine as a catalyst [37], α-4-Hydroxy phenyl β-4-iodo benzoyl ethylene (m.p. 167 °C, yield 76%) (B) was prepared by usual established method [23].

Final product was prepared by the esterification of (A) and (B) [38,39]. Thus, the ester chalconyl homologue derivatives were filtered washed with sodium bicarbonate solution followed by distilled water, dried and purified till constant transition temperatures obtained using an optical polarizing microscope equipped with a heating stage.

Alkyl halides, EtOH, KOH, Acetone, DCM, 4-Iodo acetophenone, 4-Hydroxy benzaldehyde, dicyclohexyl carbodiimide, Dimethyl amino pyridine, Malonic acid etc., required for synthesis were used as received except solvents which were dried and distilled prior to use. The synthetic route to the series is mentioned below as Scheme-1.
2. 1. 2. Reaction Scheme

Scheme 1. Synthesis route to the series.

2. 1. 3. Characterization

Representative homologues of a series were characterized by elemental analysis, Infrared spectroscopy, 1H NMR spectra. IR spectra were recorded on Perkin-Elmer spectrum GX, 1H NMR spectra were recorded on Bruker using CDCl$_3$ as solvent. Microanalysis was performed on Perkin-Elmer PE 2400 CHN analyser (Table 1).
2. 1.4. Analytical data

Table 1. Elemental analysis for (1) Hexyloxy (2) Heptyloxy (3) Octyloxy (4) Ethoxy (5) Methoxy (6) Propyloxy (7) Pentyloxy (8) Butyloxy derivatives.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Molecular formula</th>
<th>% Elements found</th>
<th>% Elements calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>C30H25O4I</td>
<td>62.41</td>
<td>4.98</td>
</tr>
<tr>
<td>3</td>
<td>C34H30O4I</td>
<td>64.00</td>
<td>6.08</td>
</tr>
<tr>
<td>4</td>
<td>C42H53O4I</td>
<td>67.39</td>
<td>8.03</td>
</tr>
<tr>
<td>5</td>
<td>C25H19O4I</td>
<td>57.98</td>
<td>3.60</td>
</tr>
<tr>
<td>6</td>
<td>C27H23O4I</td>
<td>60.24</td>
<td>4.22</td>
</tr>
<tr>
<td>7</td>
<td>C29H27O4I</td>
<td>61.43</td>
<td>4.72</td>
</tr>
<tr>
<td>8</td>
<td>C28H25O4I</td>
<td>60.74</td>
<td>4.98</td>
</tr>
</tbody>
</table>

3. RESULT AND DISCUSSION

3. 1. Synthetic route

3. 1.1. Synthesis of Trans-4-n-alkoxy cinnamic acid (A)

The resulting 4-n-alkoxybenzaldehydes were reacted with Malonic acid (1.2 equiv.) in the presence of 1-2 drops piperidine as catalyst and pyridine as solvent, refluxing the reaction mixture 3 to 4 hours to yield corresponding Trans 4-n-alkoxy cinnamic acids (B), which was confirmed by IR study [36].

3. 1.2. Synthesis of Chalcone (3-(4-hydroxyphenyl)-1-(4-iodophenyl) prop-2-en-1-one) (B)

Chalcone (B) was prepared by usual established method reported in literature [23].

3. 1.3. Synthesis of Ester derivatives (D)

3. 1.3.1. C1 Derivative

The compound has been prepared by esterification of the appropriate 4-methoxy cinnamic acid (A) (2.02 mmol) and chalcone (C) (0.246 g, 2.02 mmol), dicyclohexylcarbodiimide (DCC) (0.457 g, 2.22 mmol) and dimethylaminopyridine (DMAP) in catalytic amount (0.002 g, 0.2 mmol) in dry CH2Cl2 (DCM) (30mL) was stirred at room temperature for 48 h. The white precipitate of DCU is obtained which was isolated by
filtration and discarded, while the filtrate was evaporated to dryness. The resultant crude residue was purified by column chromatography on silica gel eluting with dichloromethane, recrystallization from methanol: chloroform (2:3) until constant transition temperatures were observed [37].

3. 1. 3. 2. C₂ Derivative

The compound has been prepared by esterification of the appropriate 4-ethoxy cinnamic acid (A) (2.02 mmol) and chalcone (C) (0.246 g, 2.02 mmol), dicyclohexylcarbodiimide (DCC) (0.457 g, 2.22 mmol) and dimethylaminopyridine (DMAP) in catalytic amount (0.002 g, 0.2 mmol) in dry CH₂Cl₂ (DCM) (30 mL) was stirred at room temperature for 48 h. The white precipitate of DCU is obtained which was isolated by filtration and discarded, while the filtrate was evaporated to dryness. The resultant crude residue was purified by column chromatography on silica gel eluting with dichloromethane, recrystallization from methanol: chloroform (2:3) until constant transition temperatures were observed [37].

3. 1. 3. 3. C₄ Derivative

The compound has been prepared by esterification of the appropriate 4-butoxy cinnamic acid (A) (2.02 mmol) and chalcone (C) (0.246 g, 2.02 mmol), dicyclohexylcarbodiimide (DCC) (0.457 g, 2.22 mmol) and dimethylaminopyridine (DMAP) in catalytic amount (0.002 g, 0.2 mmol) in dry CH₂Cl₂ (DCM) (30 mL) was stirred at room temperature for 48 h. The white precipitate of DCU is obtained which was isolated by filtration and discarded, while the filtrate was evaporated to dryness. The resultant crude residue was purified by column chromatography on silica gel eluting with dichloromethane, recrystallization from methanol: chloroform (2:3) until constant transition temperatures were observed [37].

3. 1. 3. 4. C₅ Derivative

The compound has been prepared by esterification of the appropriate 4-pentyloxy cinnamic acid (A) (2.02 mmol) and chalcone (C) (0.246 g, 2.02 mmol), dicyclohexylcarbodiimide (DCC) (0.457 g, 2.22 mmol) and dimethylaminopyridine (DMAP) in catalytic amount (0.002 g, 0.2 mmol) in dry CH₂Cl₂ (DCM) (30 mL) was stirred at room temperature for 48 h. The white precipitate of DCU is obtained which was isolated by filtration and discarded, while the filtrate was evaporated to dryness. The resultant crude residue was purified by column chromatography on silica gel eluting with dichloromethane, recrystallization from methanol: chloroform (2:3) until constant transition temperatures were observed [37].

IR Spectra in cm⁻¹ for Pentyloxy, Butyloxy, Hexyloxy, Propyloxy and Methoxy Derivatives

Pentyloxy (C₅): 2960 (C-H str. of alkane), 2848 (C-H str. of -(CH₂)n group of -OC₅H₁₁ group, 1760 (C=O str. of carbonyl carbon of ester), 1658 (C=O str. of carbonyl carbon of ester), 1600 (C=C str. of alkene), 1448, 1510, 1571 (C=C str. of aromatic ring), 952, 1024 (C-H bending of alkene), 1170 (C-O str. of ether linkage), 1251 (C-O str. of ester group), 1359 (C-H bending of alkene), 648, 570 (C-I str.). IR data confirms the molecular structure.
Butyloxy (C₄): 2960 (C-H str. of alkane), 2870 (C-H str. of -(CH₂)ₙ group of -OC₄H₉ group), 1730 (C=O str. of carbonyl carbon of ester), 1600 (C=C str. of alkene), 1467, 1533, 1579 (C=C str. of aromatic ring), 1004, 1062 (C-H bending of alkene), 1143, 1199 (C-O str. of ether linkage), 1251 (C-O str. of ester group), 1309 (C-H bending of alkene), 690, 570 (C-I str.). IR data confirms the molecular structure.

Hexyloxy (C₆): 2918 (C-H str. of alkane), 2870 (C-H str. of -(CH₂)ₙ group of -OC₆H₁₃ group), 1730 (C=O str. of carbonyl carbon of ester), 1610 (C=C str. of alkene), 1467, 1533, 1579 (C=C str. of aromatic ring), 1004, 1062 (C-H bending of alkene), 1143, 1199 (C-O str. of ether linkage), 1256 (C-O str. of ester group), 1309 (C-H bending of alkene), 690, 572 (C-I str.). IR data confirms the molecular structure.

Propyloxy (C₃): 2966 (C-H str. of alkane), 2870 (C-H str. of -(CH₂)ₙ group of -OC₃H₇ group), 1730 (C=O str. of carbonyl carbon of ester), 1600 (C=C str. of alkene), 1467, 1533, 1579 (C=C str. of aromatic ring), 1004, 1062 (C-H bending of alkene), 1143, 1199 (C-O str. of ether linkage), 1251 (C-O str. of ester group), 1309 (C-H bending of alkene), 690, 570 (C-I str.). IR data confirms the molecular structure.

Methoxy (C₁): 2926 (C-H str. of alkane), 2860 (C-H str. of -(CH₂)ₙ group of -OC₃H₇ group), 1730 (C=O str. of carbonyl carbon of ester), 1660 (C=C str. of alkene), 1467, 1533, 1579 (C=C str. of aromatic ring), 1004, 1062 (C-H bending of alkene), 1143, 1199 (C-O str. of ether linkage), 1251 (C-O str. of ester group), 1309 (C-H bending of alkene), 690, 570 (C-I str.). IR data confirms the molecular structure.

¹H NMR spectra in CDCl₃ in δ ppm for Heptyloxy, Octyloxy, Butyloxy, Propyloxy and Ethyloxy Derivative

Heptyloxy (C₇): 0.82 (t, 3H, -CH₃ of -C₇H₁₅), 1.29 (t, 4H, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-OC₇H₁₅), 1.43 (p, 5H –CH₂-CH₂-CH₂- of –OC₇H₁₅), 1.31 (q, 4H, -CH₂-CH₃), 1.73(t, 2H,-CH₂-CH₂- of -OC₇H₁₅), 4.06 (t, 3H, -OCH₂-CH₂- of –OC₇H₁₅), 6.51 & 7.59 (d, 2H, -CH=CH-), 7.2 & 7.74 (4.01H, middle phenyl ring), 7.65 & 7.97 (4H, third phenyl ring), 6.93 & 7.61 (4H, phenyl ring with alkoxy chain). NMR data confirms the molecular structure.

Octyloxy (C₈): 0.82 (t, 3H, -CH₃ of -C₈H₁₇), 1.75 (t, 4H, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-OC₈H₁₇), 1.29 (p, 5H –CH₂-CH₂-CH₂-CH₂- of –OC₈H₁₇), 1.31 (q, 4H, -CH₂-CH₃), 1.73(t, 2H,-CH₂-CH₂-CH₂- of -OC₈H₁₇), 3.93 (t, 3H, -OCH₂-CH₂- of –OC₈H₁₇), 6.51 & 7.59 (d, 2H, -CH=CH-), 7.21 & 7.74 (4.01H, middle phenyl ring), 7.56 & 7.97 (4H, third phenyl ring), 6.93 & 7.61 (4H, phenyl ring with alkoxy chain). NMR data confirms the molecular structure.

Butyloxy (C₄): 0.82 (t, 3H, -CH₃ of –C₄H₉), 1.75 (t, 4H, CH₃-CH₂-CH₂-CH₂- -OC₄H₉), 1.31 (q, 4H, -CH₂-CH₃), 1.73(t, 2H,-CH₂-CH₂- of -OC₄H₉), 6.57 & 7.56 (d, 2H, -CH=CH-),7.23 &7.74 (4.01H, middle phenyl ring), 7.52 & 7.96 (4H, third phenyl ring), 6.92 & 7.61 (4H, phenyl ring with alkoxy chain). NMR data confirms the molecular structure.

Propyloxy (C₃): 0.82 (t, 3H, -CH₃ of –C₃H₇), 1.29 (t, 4H, CH₃-CH₂-CH₂- -OC₃H₇), 1.30 (q, 4H, -CH₂-CH₃), 4.06 (t, 2H, -OCH₂-CH₂- of –OC₃H₇), 6.54 & 7.56 (d, 2H, -CH=CH-), 7.22 &7.74 (4.01H, middle phenyl ring), 7.66 & 7.98 (4H, third phenyl ring), 6.93 & 7.61 (4H, phenyl ring with alkoxy chain). NMR data confirms the molecular structure.

Ethyloxy (C₂): 0.82 (t, 2H, -CH₃ of –C₂H₅), 1.43 (p, 5H –CH₂-CH₂-CH₂- of –OC₃H₁₅), 1.31 (q, 3H, -CH₂-CH₃), 6.51 & 7.60 (d, 2H, -CH=CH-), 7.16 & 7.72 (4.01H, middle phenyl ring),
7.65 & 7.94 (4H, third phenyl ring), 6.93 & 7.61 (4H, phenyl ring with alkoxy chain). NMR data confirms the molecular structure.

Thus, keeping in view the antimicrobial potential of chalcones and cinnamate ester, it was envisaged that the synthesis and antibacterial and antifungal evaluation of newly chalconyl vinyl ester hybrids is worth the attempt. Figure 1 shows the representative structures of potent antibacterial compounds that contain chalcone (–CH=CH–CO–) and cinnamate (–CH=CH–COO–) group with terminal iodo group and left side alkoxy group to form the basis of our designed prototype. The geometrical shape of present synthesized compound is rod type and also its exhibited LC property with good thermal stability [40-46].

Figure 1. Designing of chalcone and cinnamate based hybrids

3.2. Biological Evaluation

In the present work, the focus has been drawn on designing new structural entities of chalcones by incorporating para iodo acetophenone and para substituted aldehydes into chalcone scaffolds to evaluate the prospective effect on biological activity, particular antibacterial and antifungal. The antibacterial activity of the synthesized compounds C1 to C8 was determined in-vitro using MIC (Broth dilution method) against four pathogenic micro-organism viz. E. coli, P. aeruginosa (Gram –ve) and S. aureus, S. pyogenus (Gram +ve) and three fungal strains C. albicans, A.niger and A. clavatus at various concentrations. Synthesized compounds showed good activity results against E. coli, P. aeruginosa (Gram –ve) and S. aureus, S. pyogenus (Gram +ve), which was comparatively nearer to the standard drug Ampicillin. While, in antifungal activity of comp. C7 showed good results in C. albicans at 500 µg/mL which was equivalent to standard drug Greseofulvin.

3.2.1. In vitro antibacterial activity

Table 2 shows that all the newly synthesized compounds were found to exhibit good to moderate activity against specific microbial strains. Initially, we screened all the synthesized compounds (C1 to C8) for their antibacterial activity in vitro by using both dilution method. The in vitro antibacterial results confirmed that some of the chalconyl-ester hybrids exhibited good results against various strains of E. coli, P. aeruginosa (Gram–ve) and S. aureus, S. pyogenus (Gram +ve) as shown in Table 2. Antibacterial results was comparatively nearer to the standard drug ampicillin as compare to other drug. Compound C6 and C8 (62.5 µg/ml
MIC) gives results for E. coli at lower concentration as compare to standard drug ampicillin. While, C₇ and C₈ showed activity against S. aureus (62.5 µg/ml MIC) which is lower than standard drug ampicillin. Furthermore, compound C₃ to C₈ having growth inhibition at (100 µg/ml MIC). The result obtained is nearer to standard drug. Compound C₁ to C₃ showed activity against Gram +ve and Gram –ve at higher concentration as compare to higher side chain compound. From this result, we studied that antibacterial and antifungal activity of compound C₄ to C₈ is good as compare to compound C₁ to C₃.

Table 2. Result of antibacterial activity of the synthesized compounds.

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Code</th>
<th>E. coli</th>
<th>P. aeruginosa</th>
<th>S. aureus</th>
<th>S. pyogenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Code</td>
<td>MTCC 443</td>
<td>MTCC 442</td>
<td>MTCC 96</td>
<td>MTCC 442</td>
</tr>
<tr>
<td>1</td>
<td>C₁</td>
<td>125</td>
<td>120</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>C₂</td>
<td>125</td>
<td>125</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>C₃</td>
<td>125</td>
<td>100</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>C₄</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>C₅</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>C₆</td>
<td>62.5</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>C₇</td>
<td>100</td>
<td>100</td>
<td>62.5</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>C₈</td>
<td>62.5</td>
<td>100</td>
<td>62.5</td>
<td>100</td>
</tr>
<tr>
<td>Standard</td>
<td>Ampicillin</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>Standard</td>
<td>Gentamycin</td>
<td>0.05</td>
<td>1</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Standard</td>
<td>Chloramphenicol</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Standard</td>
<td>Ciprofloxacin</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

3. 2.2. *In vitro* antifungal activity

Antifungal activity data (Table 3) displayed that the synthesized compound C₁ to C₈ showed adaptable degrees of inhibition against the tested fungi C. albicans, A. niger, A. clavatus. Fungi was inhibited by C₂, C₅, C₈ at 500 µg/ml MIC which is equal to the concentration of standard drug Greseofulvin. While inhibiting against A. Niger, A. clavatus
fungi at higher MIC value. Compound C₆, C₇ shows good inhibiting against C.Albicans. Compound C₆ shows good activity profile against *C. albicans*, *A. niger*, and *A. clavatus*. Rest of the derivatives exerted moderate to poor activity profiles.

Table 3. Result of antifungal activity of the synthesized compounds.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Code. No.</th>
<th>C. albicans</th>
<th>A. niger</th>
<th>A. clavatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₁</td>
<td>1000</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>2</td>
<td>C₂</td>
<td>500</td>
<td>>1000</td>
<td>>1000</td>
</tr>
<tr>
<td>3</td>
<td>C₃</td>
<td>1000</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>C₄</td>
<td>1000</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>C₅</td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>C₆</td>
<td>250</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>C₇</td>
<td>250</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>C₈</td>
<td>500</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Standard

| | Nystatin | 100 | 100 | 100 |

| | Greseofulvin | 500 | 100 | 100 |

4. **CONCLUSION**

In conclusion, we have designed and synthesized a newly chalconyl vinylester based series and The majority of these hybrid compounds, especially, exhibited promising in vitro antibacterial activity against *E. coli*, *P. aeruginosa*, *S. aureus*, *S. pyogenus*. Furthermore, the antifungal screening of some compounds found to be active due to presence of long side chain. The newly synthesized chalconyl ester derivative shows LC property as well as antimicrobial activity. All the synthesized compounds were confirmed by spectral analysis.

Acknowledgement

Author thank to NFDD, Centre of excellence, Rajkot for the analytical and spectral facilities and. T. Author also grateful to thanks Dr. R.R.Shah, principal of K. K. Shah Jarodwala Maninagar Science College, Ahmedabad, Gujarat, India.
References

(Received 17 August 2016; accepted 03 September 2016)