Dependence of Molecular Flexibility of Lateral Group on Mesomorphism

B. B. Jaina and R. B. Patelb

Chemistry Department, K. K. Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, Gujarat, India

a,bE-mail address: bijendrajain1988@gmail.com, roshanpatel770@gmail.com

ABSTRACT

A Chalconyl homologous series: RO-C\textsubscript{6}H\textsubscript{4}-CH=CH-CO-C\textsubscript{6}H\textsubscript{4}-OC\textsubscript{12}H\textsubscript{25}(n) (meta) of novel liquid crystalline (LC) derivatives of thermotropic variety have been synthesized and studied with a view to understand the effect of molecular structure on LC behaviours with reference to varying flexibility due to tailed end group for the same homologue and from homologue to homologue in the same series. A novel series consisted of thirteen homologues whose first member is nonliquidcrystals and the rest of the homologues are LC in enantiotropic or monotropic condition. Nematogenic mesomorphism commences from C\textsubscript{2} homologue. C\textsubscript{2} to C\textsubscript{4} homologues are enantiotropic nematic and C\textsubscript{6} to C\textsubscript{18} homologues are monotropic nematic. Smectogenic character commences from C\textsubscript{4} homologue as enantiotropic manner and C\textsubscript{6} to C\textsubscript{18} derivatives are monotropic smectic. Transition temperatures and textures of mesophases were determined by an optical polarising microscopy (POM) equipped with a heating stage. The transition curves of a phase diagram behaved in normal manner. Spectral, analytical and thermal data supported the molecular structures of homologues. Thermal stability for smectic is low of the order of 56.0 °C and that of the nematic is 70.5 °C. The corresponding mesophase lengths for smectic and nematic are varied minimum to maximum are 1 or 2 °C to 15 °C and 5 to 29 °C respectively. The group efficiency order derived on the basis of thermal stability.

Keywords: Liquid Crystals; Smectic; Nematic; monotropy; Enantiotropy
1. INTRODUCTION

Liquid crystalline [1] property (LC) of a substance is an unique property, which flows on the surface like liquid and possesses optical properties like crystals. Therefore such substances of thermotropic or lyotropic varities are neither fully crystalline nor fully liquidous. The Chalconyl derivatives due to their geometrical shapes may exhibit LC properties with lower thermometric transitions and bioactivity. The aims and object in view to study the effect of molecular structure on LC properties and LC behaviours [2-7] as a result of molecular flexibility keeping molecular rigidity unaltered throughout a series and changing flexibility from series to series for the same homologue at constant rigidity. LC substances have proved their ability for LC devices to be operated at room temperature or desired temperature as well as in the pharmaceutical preparations operating bioactivity as antibacterial, antifungal, antimalarial, anticancer etc. [8-15]. Present investigation will include, synthesis and characterization by analytical, thermal and spectral data. Thermometric data will be derived using an optical polarising microscopy (POM) equipped with a heating stage and will be discussed and interpreted in terms of molecular rigidity and flexibility in relation [16-19] to molecular structure geometry, size, polarity and polarizability etc. LC properties of present novel series will be compared with the structurally similar analogous series. Number of homologous series have been reported till the date [20-26].

2. EXPERIMENTAL

2.1. Synthesis

Scheme 1. Synthetic route to the series.
Alkylation of 4-hydroxy benzaldehyde to give 4-n-alkoxy benzaldehyde is carried out by reported method [27] and 3-n-alkoxy acetophenone is obtained by alkylation of 3-hydroxy acetophenone by reported method [28] Thus, the chalconyl homologue derivatives (C) were prepared by usual establish method [29] Homologues were filtered, washed with ethanol solution dried and purified till constant transition temperatures obtained using an optical polarising microscope equipped with a heating stage. Alkyl halides, EtOH, KOH, 3-Hydroxy acetophenone, 4-Hydroxy benzaldehyde etc., required for synthesis were used as received except solvents which were dried and distilled prior to use. The synthetic route to the series is mentioned below as Scheme 1.

2. 2. Characterization

Selected members of the novel homologous series were characterized by Elemental Analysis, infrared spectroscopy, 1H NMR spectra. IR spectra were recorded by Perkin-Elmer spectrum GX, 1H NMR spectra were recorded on Bruker using CDCl3 as solvent. Microanalysis was performed on a Perkin-Elmer PE2400 CHN analyzer. Transition temperature and LC properties(Textures) were determined using an optical polarizing microscopy equipped with a heating stage. Textures of nematic phase determined by miscibility method. Thermodynamic quantity enthalpy (ΔH) and entropy (ΔS) are qualitatively discussed instead of DSC scan.

2. 3. Analytical Data

Table 1. Elmental Analysis for Hexloxy, Octyloxy, Decyloxy and tetradecyloxy derivatives.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Molecular formula</th>
<th>% Elements found</th>
<th>% Elements Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>C33H48O3</td>
<td>80.48</td>
<td>9.75</td>
</tr>
<tr>
<td>2</td>
<td>C35H52O3</td>
<td>80.76</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>C37H56O3</td>
<td>81.02</td>
<td>10.21</td>
</tr>
<tr>
<td>4</td>
<td>C41H64O3</td>
<td>81.45</td>
<td>10.59</td>
</tr>
</tbody>
</table>

2. 4. IR Spectra in cm⁻¹ for Hexyloxy & Dodecylxyloxy Derivatives

Hexyloxy: 2953 (C-H str. of alkane), 2847 (C-H str. of –(CH2)ₙ group of –OC₆H₁₃ group, 1600-1668 (C=O str. of carbonyl group of chalconyl group), 1614 (C=C str. of alkene), 1585 (C=C str. of aromatic ring), 1008, (C-H bending of alkene), 1170 (C-O str. of ether linkage), 1248 (C-O str. of carbonyl group), 778 Polymethylene (-CH₂-) of –OC₁₂H₂₅, 822 (-C-H- def. m di-substituted-Para), IR data confirms the molecular structure.

Dodecylxyloxy: 2956 (C-H str. of alkane), 2848 (C-H str. of –(CH₂)ₙ group of –OC₁₂H₂₅ group, 1600-1685 (C=O str. of carbonyl group of chalconyl group), 1641 (C=C str. of alkene), 1589 (C=C str. of aromatic ring), 1012, (C-H bending of alkene), 1174 (C-O str. of ether
linkage), 1251 (C-O str. of carbonyl group), 775 Polymethylene (-CH2-) of –OC12H25,823 (–
C-H- def. m di-substituted-Para), IR data confirms the molecular structure.

2. 5. 1HNMR spectra in CDCl3 in δ ppm for Decyloxy & Tetradecyloxy Derivative

Decyloxy: 0.88 (t, -CH3 of polymethylene –C10H21 and –C12H25), 1.80 (p, CH3-CH2-CH2-
CH2-CH2- of –OC10H21 and –OC12H25), 1.28 (m, –CH2-CH2-CH2- of –OC10H21 and –
OC12H25), 1.48 (q, –CH2-CH3), 4.06 (t, -OCH2-CH2-), 7.59 (d, -CH=CH-), 7.43, 7.28 & 7.83
(meta substituted phenyl ring), 7.55 & 7.60 (phenyl ring with alkoxy chain). NMR data
confirms the molecular structure.

Tetradecyloxy: 0.86 (t, -CH3 of –C14H29and –C12H25), 1.78 (CH3-CH2-CH2-CH2-CH2-CH2 of
–OC14H29 and –OC12H25), 1.31 (polymethylene –CH2-CH2-CH2- of –OC14H25 and –OC12H25),
1.43 (q,–CH2-CH3), 4.04 (t, -OCH2-CH2-), 7.54 (d, -CH=CH-), 7.40, 7.28 & 7.80 (meta
substituted phenyl ring), 7.52 & 7.62 (phenyl ring with alkoxy chain). NMR data confirms
the molecular structure.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Homologue</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C6</td>
<td>Threaded</td>
</tr>
<tr>
<td>2</td>
<td>C10</td>
<td>Threaded</td>
</tr>
<tr>
<td>3</td>
<td>C14</td>
<td>Schlieren</td>
</tr>
<tr>
<td>4</td>
<td>C16</td>
<td>Droplets type</td>
</tr>
</tbody>
</table>

Homologous series: RO-\(\text{CH=CH-CO}\)-OC12H25

<table>
<thead>
<tr>
<th>Sr.no</th>
<th>R= n-alkyl group</th>
<th>Transition temperatures in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Smectic</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>C3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>C4</td>
<td>43.0</td>
</tr>
</tbody>
</table>
3. RESULT AND DISCUSSION

A novel chalconyl series consisted of two phenyl rings, one terminal and one lateral group bonded through one central bridge is liquid crystalline in nature (C$_2$ to C$_{18}$) except first member C$_1$ of a series. Condensation of 4-n-alkoxy benzaldehyde with 3-n-Dodecylxy acetophenone yielded thirteen (C$_1$ to C$_{18}$) homologues. Mesomorphism commenced from C$_2$ homologue and continued upto C$_{18}$ homologue. C$_4$ and C$_5$ homologues are enantiotropic smectic and C$_6$ to C$_{18}$ members of a series are monotropically smectogenic. Moreover C$_2$ to C$_5$ homologues are enantiotropic nematic and C$_6$ to C$_{18}$ homologues are monotropic nematic. Thus all the members of a series except C$_1$. The C$_2$ and C$_3$ members of a series are only nematogenic, and C$_4$ to C$_{18}$ homologues are nematogenic plus smectogenic in either enantiotropic (C$_4$ and C$_5$) or monotropic (C$_6$ to C$_{18}$) condition.

Transition temperatures of homologues (Table 2) were plotted against the number of carbon atoms present in n-alkyl chain ‘R’ of –OR group and then on linking like or related transition points, transition curves Cr-N/I, N-I or I-N and N-Sm or Sm-N are obtained, which shows the phase behaviours of series in figure-1. The Cr-N/I transition curve adopted zigzag path of rising and falling with overall descending manner. Sm-N or N-Sm transition curve initially descended and then ascended and finally descended to C$_{18}$ homologue with exhibition of odd-even effect from C$_4$ to C$_9$ derivatives of a series. N-I or I-N transition curve descended from C$_2$ to C$_6$ and then ascended by negligible magnitudes and finally descended by about 4 to 5 degree at C$_{18}$ homologu with exhibition of odd-even effect from C$_2$ to C$_5$ homologue.

Thus, transition curves behaved in normal manner. Odd member’s transition curve for nematic occupied lower position than even members and reversal of occupation of transition curves for smectic i.e. odd member’s transition curve for smectic occupies higher position than even member’s curve. The sequential order of mesophase appearance of monotropy and enantiotropy is reversed or deviated from normal order as observed for other homologous
series of esters or azoesters or chalconyl esters. Odd-even effect diminishes as series is ascended for higher homologues of longer n-alkyl chain ‘R’ of –OR group.

Figure 1. Phase behaviours of Series.
The changing trend in mesogenic properties from homologue to homologue in the same present novel series is observed. The exhibition of mesomorphism by C₂ to C₁₈ homologues of a present novel series is attributed to the suitable magnitudes of anisotropic forces of intermolecular cohesions and closeness as a consequence of fittest molecular rigidity and favourable flexibility. The flexibility from homologue to homologue in the same series undergo variations keeping molecular rigidity and the part of flexibility due to laterally meta substituted –OC₁₂H₂₅(n) tailed end unaltered.

Thus, variations in mesomorphic properties from homologue to homologue in a present novel series can be linked to the varied flexibility due to sequentially added methylene unit at the n-alkyl chain ‘R’ of –OR left terminal end group. The suitable magnitudes of anisotropic forces of intermolecular end to end attractions operated by dispersion forces and dipole-dipole as well as electron-electron interactions are favorably suitable to arrange the molecules of C₂ to C₅ homologues in statistically parallel orientational order above isotropic temperature and then the molecules of C₆ to C₁₈ homologues arranges themselves in identically manner below isotropic temperature under floating condition to induce nematic phase.

Similarly C₄ to C₅ homologues and C₆ to C₁₈ homologues arrange themselves to float with sliding layered molecular arrangement above and below isotropic temperature under floating condition respectively to induce smectogenic character. Appearance of odd-even effect upto definite homologue is due to the presence of odd and even number of carbon atoms present in n-alkyl chain ‘R’ of –OR group which normally remain in normal manner.

Figure 2. Structurally analogous series.
However, disappearance of odd-even effect for higher homologues of longer n-alkyl chain ‘R’ of –OR group and –OC_{12}H_{25}(n) tailed lateral group is attributed to the coiling or bending or flexing or coupling of n-alkyl chain with the major axis of core structure of a molecule. Thus, unusual status of n-alkyl chain may deviate the magnitudes of anisotropic forces of intermolecular attractions and may favour or disfavour the exhibition of mesomorphism and may alter the normal sequential order of enantiotropy and monotropy in a homologous series. The variations in thermometric mesogenic properties of presently investigated novel series - 1 are compared with other structurally similar analogous series - X [30] and Y [31] as mentioned below in Figure 2.

Homologous series (1), X and Y are identical with respect to total molecular rigidity played by two phenyl rings and one central bridge –CH=CH-CO-. The identical left alkoxy terminal end group –OR for the same homologue from series to series which partly contributes to total molecular flexibility. Therefore variations in molecular flexibility arises for the same homologue from series to series is due to the changing meta substituted –OC_{12}H_{25}, -OC_{14}H_{29} and -OC_{16}H_{33} tailed ends of series 1, X and Y respectively. Therefore variations in mesogenic properties and behaviours and the degree of mesomorphism can be linked with the changing magnitudes of molecular flexibility due to changing polarity, polarizability, dipolemoments across the long molecular axis, vanderval forces etc. of n-alkoxy meta substituted tail ends from series to series for the same homologue. Some thermometric properties of series 1, X and Y are mentioned below in Table 4 as under.

<table>
<thead>
<tr>
<th>Table 4. Thermal Stability in °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
</tr>
<tr>
<td>Sm-N or N-Sm</td>
</tr>
<tr>
<td>Commencement of</td>
</tr>
<tr>
<td>Smectic phase</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>N-I or I-N</td>
</tr>
<tr>
<td>Commencement of</td>
</tr>
<tr>
<td>Nematic phase</td>
</tr>
<tr>
<td>Total mesophase</td>
</tr>
<tr>
<td>lengths in °C</td>
</tr>
</tbody>
</table>

It is clear from Table 4 that,

- A homologous novel series - 1 is enantiotropically and monotropically smectogenic plus nematogenic whereas homologous series-X and Y are enantiotropically and monotropically only nematogenic plus only monotropically smectogenic.
- Nematogenic mesomorphism uniformly commences from C_2 member of series 1, X and Y whereas smectogenic mesomorphism commences from C_6 and C_7 members of
the series X and Y respectively in monotropic manner and for series-1 it commences from earliest C₄ homologue in enantiotropic (C₄ and C₅) manner and then continue in monotropic (C₆ to C₁₈) manner. i.e. smectogenic mesomorphism commences later in increasing order of homologue i.e. earliest homologue in series 1 and then series X and Y.

- Thermal stability for series-1 is more than series X and Y which is very very short.
- Thermal stability and the mesophase lengths alternates from series-1 to X to Y or series Y to X to 1.

The suitable magnitudes of anisotropic forces of intermolecular attractions caused by suitable magnitudes of dispersion forces, dipole-dipole interactions, molecular polarity and differing polarizability offered by differing meta substituted –OC₁₂H₂₅(n), -OC₁₄H₂₉(n) and –OC₁₆H₃₃(n) groups which induces magnitudes of molecular flexibility to facilitates and stabilise the molecular arrangement required to exhibit nematic and smectic mesophase formation either in enantiotropic or/and monotropic manner under floating condition.

The early or late mesophase or mesophases appearances are attributed to the extent of molecular noncoplanarity exerted from respective molecular structures and the status of n-alkyl chains of the –OC₁₂H₂₅(n), -OC₁₄H₂₉(n) and –OC₁₆H₃₃(n) lateral groups of series 1, X and Y respectively, though their linearity due to the rest of the molecular part except meta substituted groups for the same homologue are identically same.

Thus, differing flexibility offered by varying lateral groups, alters the extent of molecular noncoplanarity for smectic. However, the extent of molecular noncoplanarity is ineffective for commencement of nematic phase from C₂ homologue of all the series 1, X and Y, because of its optimum magnitudes of dispersive forces and dipole-dipole interactions required to cause commencement of nematic phase. The low magnitudes of dispersion forces and same homologue C₁ of the series 1, X and Y under comparative study.

The alternation of nematic thermal stability or mesophase lengths are related with the combined effects of molecular rigidity in combination with flexibility and the unexpected status of both ended n-alkoxy end groups, which may fluctuate with the status of flexible groups and their polarity or polarizability.

Therefore, it may acquire increasing or decreasing or alternating order of facilitating or stabilizing mesophase or mesophases in enantiotropic or monotropic manner. Thus, present chalconyl homologous series is predominantly nematogenic and partly smectogenic of low melting type and shorter mesophase lengths.

4. CONCLUSIONS

- Novel homologous series of single central bridge linking two phenyl rings and n-alkoxy terminal/lateral groups is enantiotropically and monotropically nematogenic and smectogenic in which the sequential order of monotropy and enantiotropy is reversed than expected normal order.
- The group efficiency order derived on the basis of (a) thermal stability (b) early commencement of mesophase (c) Mesophase lengths for smectic and nematic are as under.
(a) Smectic

\[-\text{OC}_{12} \text{H}_{25}(n) > \text{-OC}_{14} \text{H}_{29}(n) = \text{-OC}_{16} \text{H}_{33}(n)\]

Nematic

\[-\text{OC}_{16} \text{H}_{33}(n) > \text{-OC}_{12} \text{H}_{25}(n) > \text{-OC}_{14} \text{H}_{29}(n)\]

(b) Smectic

\[-\text{OC}_{12} \text{H}_{25}(n) > \text{-OC}_{14} \text{H}_{29}(n) > \text{-OC}_{16} \text{H}_{33}(n)\]

Nematic

\[-\text{OC}_{12} \text{H}_{25}(n) = \text{-OC}_{14} \text{H}_{29}(n) = \text{-OC}_{16} \text{H}_{33}(n)\]

(c) Smectic + Nematic

Upper: \[-\text{OC}_{12} \text{H}_{25}(n) > \text{-OC}_{16} \text{H}_{33}(n) > \text{-OC}_{14} \text{H}_{29}(n)\]

Lower: \[-\text{OC}_{12} \text{H}_{25}(n) = \text{-OC}_{14} \text{H}_{29}(n) = \text{-OC}_{16} \text{H}_{33}(n)\]

- Mesomorphism is very sensitive and susceptible to the molecular structure as a consequence of molecular rigidity or/and molecular flexibility.
- Present novel compounds may be useful for the devices to be operated at room temperature or low temperature and their biological activity as antifungal or antibacterial etc. may be exploited in agricultural production to control and reduce the consumption of insecticides and pesticides.
- Present investigation supported and raised credibility to the conclusions drawn earlier, as well as suggested the possibility of sequential order appearing mesophase as monotropy and enantiotropy in a homologous series.

Acknowledgement

Authors acknowledge thanks to Dr. R. R. Shah, principal of K. K. Shah Jarodwala Maninagar Science College, Ahmedabad. Authors also thank to Dr. A. V. Doshi, Ex-principal of M.V.M. Science and Home Sci. College - Rajkot for his constant support, inspirations, suggestions and help, as and when needed during the course of present investigation. Authors thank to NFDD Centre for the analytical and spectral services.

References

(Received 23 January 2016; accepted 06 February 2016)